These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 567343)
1. Asymmetry of the chloride transport system in human erythrocyte ghosts. Schnell KF; Besl E; Manz A Pflugers Arch; 1978 Jun; 375(1):87-95. PubMed ID: 567343 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of the phosphate self-exchange flux in human erythrocytes and erythrocyte ghosts. Stadler F; Schnell KF J Membr Biol; 1990 Oct; 118(1):19-47. PubMed ID: 2283679 [TBL] [Abstract][Full Text] [Related]
3. Electron spin resonance studies on the inorganic-anion-transport system of the human red blood cell. Binding of a disulfonatostilbene spin label (NDS-TEMPO) and inhibition of anion transport. Schnell KF; Elbe W; Käsbauer J; Kaufmann E Biochim Biophys Acta; 1983 Jul; 732(1):266-75. PubMed ID: 6307363 [TBL] [Abstract][Full Text] [Related]
4. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions. Eidelman O; Cabantchik ZI J Membr Biol; 1983; 71(1-2):149-61. PubMed ID: 6834420 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the Band 3 substrate site in human red cell ghosts by NDS-TEMPO, a disulfonatostilbene spin probe: the function of protons in NDS-TEMPO and substrate-anion binding in relation to anion transport. Kaufmann E; Eberl G; Schnell KF J Membr Biol; 1986; 91(2):129-46. PubMed ID: 3018256 [TBL] [Abstract][Full Text] [Related]
6. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. Funder J; Wieth JO J Physiol; 1976 Nov; 262(3):679-98. PubMed ID: 13204 [TBL] [Abstract][Full Text] [Related]
7. Concentration dependence of the unidirectional sulfate and phosphate flux in human red cell ghosts under selfexchange and under homoexchange conditions. Schnell KF; Besl E Pflugers Arch; 1984 Oct; 402(2):197-206. PubMed ID: 6527939 [TBL] [Abstract][Full Text] [Related]
8. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate. Wieth JO J Physiol; 1979 Sep; 294():521-39. PubMed ID: 512956 [TBL] [Abstract][Full Text] [Related]
9. Chloride mediated inhibition of the phosphate and the sulfate transport by dipyridamole in human erythrocyte ghosts. Renner M; Dietl M; Schnell KF FEBS Lett; 1988 Sep; 238(1):77-81. PubMed ID: 3169258 [TBL] [Abstract][Full Text] [Related]
10. Phosphate transport in human red blood cells: concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions. Schnell KF; Besl E; von der Mosel R J Membr Biol; 1981; 61(3):173-92. PubMed ID: 7277470 [TBL] [Abstract][Full Text] [Related]
11. Anion transport in red blood cells and arginine specific reagents. (1). Effect of chloride and sulfate ions on phenylglyoxal sensitive sites in the red blood cell membrane. Zaki L Biochem Biophys Res Commun; 1983 Jan; 110(2):616-24. PubMed ID: 6838541 [TBL] [Abstract][Full Text] [Related]
12. Concentration dependence of the chloride selfexchange and homoexchange fluxes in human red cell ghosts. Hautmann M; Schnell KF Pflugers Arch; 1985 Oct; 405(3):193-201. PubMed ID: 4069977 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of bicarbonate and chloride transport in human red cell membranes. Gasbjerg PK; Brahm J J Gen Physiol; 1991 Feb; 97(2):321-49. PubMed ID: 1849960 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of inorganic anion transport across the human red blood cell membrane by chloride-dependent association of dipyridamole with a stilbene disulfonate binding site on the band 3 protein. Legrum B; Passow H Biochim Biophys Acta; 1989 Feb; 979(2):193-207. PubMed ID: 2923878 [TBL] [Abstract][Full Text] [Related]
15. A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red cell membrane. Ku CP; Jennings ML; Passow H Biochim Biophys Acta; 1979 May; 553(1):132-41. PubMed ID: 454583 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of anion transport in the red blood cell by anionic amphiphilic compounds. I. Determination of the flufenamate-binding site by proteolytic dissection of the band 3 protein. Cousin JL; Motais R Biochim Biophys Acta; 1982 May; 687(2):147-55. PubMed ID: 7046802 [TBL] [Abstract][Full Text] [Related]
17. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time. Gunn RB; Fröhlich O J Gen Physiol; 1979 Sep; 74(3):351-74. PubMed ID: 479826 [TBL] [Abstract][Full Text] [Related]
18. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts. Schnell KF; Gerhardt S; Schöppe-Fredenburg A J Membr Biol; 1977 Jan; 30(4):319-50. PubMed ID: 14260 [No Abstract] [Full Text] [Related]
19. A model for the action of the anion exchange protein of the red blood cell. Rothstein A; Knauf PA; Grinstein S; Shami Y Prog Clin Biol Res; 1979; 30():483-96. PubMed ID: 531039 [TBL] [Abstract][Full Text] [Related]
20. The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell. Cabantchik ZI; Knauf PA; Ostwald T; Markus H; Davidson L; Breuer W; Rothstein A Biochim Biophys Acta; 1976 Dec; 455(2):526-37. PubMed ID: 999926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]