These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 567368)

  • 1. Pathways of propranolol metabolism. Use of the stable isotope twin-ion GC-MS technique to examine the conversion of propranolol to propranolol-diol by 9000g rat liver supernatant.
    Nelson WL; Burke TR
    Res Commun Chem Pathol Pharmacol; 1978 Jul; 21(1):77-85. PubMed ID: 567368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-dealkylation of propranolol in rat, dog, and man. Chemical and stereochemical aspects.
    Nelson WL; Bartels MJ
    Drug Metab Dispos; 1984; 12(3):345-52. PubMed ID: 6145562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical aspects of propranolol metabolism. Synthesis and identification of 3-(4-hydroxy-1-naphthoxy)propane-1,2-diol as a metabolite of propranolol in the dog, in man and in the rat liver 9000g supernatant fraction.
    Gupte SM; Bartels MJ; Kerr BM; Laganiere S; Silber BM; Nelson WL
    Res Commun Chem Pathol Pharmacol; 1983 Nov; 42(2):235-44. PubMed ID: 6658188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and identification of 3-(4-hydroxy-1-naphthoxy)lactic acid as a metabolite of propranolol in the rat, in man, and in the rat liver 9000 g supernatant fraction.
    Talaat RE; Nelson WL
    Drug Metab Dispos; 1986; 14(2):202-7. PubMed ID: 2870895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of catechol-like and monophenolic metabolites of propranolol by the rat liver 9000G supernatant.
    Tindell GL; Walle T; Knapp DR
    Res Commun Chem Pathol Pharmacol; 1978 Jan; 19(1):11-22. PubMed ID: 625580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of 13-cis-retinoic acid by a rat liver 9000g supernatant preparation.
    Vane FM; Buggé CJ; Williams TH
    Drug Metab Dispos; 1982; 10(3):212-9. PubMed ID: 6125352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereochemical composition of propranolol metabolites in the dog using stable isotope-labeled pseudoracemates.
    Walle T; Wilson MJ; Walle UK; Bai SA
    Drug Metab Dispos; 1983; 11(6):544-9. PubMed ID: 6140137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attempts to use cyanide ion to trap imine intermediates in the microsomal N-dealkylation of propranolol: formation of alpha-aminonitriles as artifacts when using ether for extraction.
    Shetty HU; Nelson WL
    J Pharm Sci; 1985 Sep; 74(9):968-71. PubMed ID: 4067851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective oxidative metabolism of propranolol in the microsomal fraction from rat and human liver. Use of deuterium labeling and pseudoracemic mixtures.
    Nelson WL; Shetty HU
    Drug Metab Dispos; 1986; 14(4):506-8. PubMed ID: 2874001
    [No Abstract]   [Full Text] [Related]  

  • 10. Chemical trapping of labile aldehyde intermediates in the metabolism of propranolol and oxprenolol.
    Goldszer F; Tindell GL; Walle UK; Walle T
    Res Commun Chem Pathol Pharmacol; 1981 Nov; 34(2):193-205. PubMed ID: 7335950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regioisomeric aromatic dihydroxylation of propranolol. Use of monohydroxylated intermediates for structural assignments of the metabolites formed in vitro.
    Talaat RE; Nelson WL
    Drug Metab Dispos; 1988; 16(2):207-11. PubMed ID: 2898334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pathways of propranolol metabolism in dog and rat liver 10,000g supernatant fractions.
    Vu VT; Abramson FP
    Drug Metab Dispos; 1980; 8(5):300-4. PubMed ID: 6107225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an arene oxide-NIH shift pathway in the metabolic conversion of propranolol to 4'-hydroxypropranolol in the rat and in man.
    Nelson WL; Powell ML
    Drug Metab Dispos; 1979; 7(6):351-5. PubMed ID: 43218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Side-chain metabolism of propranolol: involvement of monoamine oxidase and aldehyde reductase in the metabolism of N-desisopropylpropranolol to propranolol glycol in rat liver.
    Wu X; Noda A; Noda H; Imamura Y
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Aug; 129(4):361-8. PubMed ID: 11489433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of 3-butene-1,2-diol by alcohol dehydrogenase.
    Kemper RA; Elfarra AA
    Chem Res Toxicol; 1996; 9(7):1127-34. PubMed ID: 8902267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Side-chain metabolism of propranolol: involvement of monoamine oxidase and mitochondrial aldehyde dehydrogenase in the metabolism of N-desisopropylpropranolol to naphthoxylactic acid in rat liver.
    Imamura Y; Wu X; Noda A; Noda H
    Life Sci; 2002 Apr; 70(22):2687-97. PubMed ID: 12269395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibitory effect of propranolol pretreatment on its own metabolism in the rat.
    Schneck DW; Pritchard JF
    J Pharmacol Exp Ther; 1981 Sep; 218(3):575-81. PubMed ID: 6267246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of 1-acetamino-3-(1-naphthyloxy)-2-propanol as a new metabolite of propranolol.
    Noda A; Ono Y; Inokuchi K; Eto S; Noda H; Muro H; Uchida T
    Biol Pharm Bull; 1994 Oct; 17(10):1433-5. PubMed ID: 7874072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formation of glutathione conjugate derived from propranolol.
    Sasame HA; Liberato DJ; Gillette JR
    Drug Metab Dispos; 1987; 15(3):349-55. PubMed ID: 2886310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the metabolism and chiral inversion of ibuprofen in isolated rat hepatocytes.
    Sanins SM; Adams WJ; Kaiser DG; Halstead GW; Baillie TA
    Drug Metab Dispos; 1990; 18(4):527-33. PubMed ID: 1976078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.