These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 5675092)

  • 1. Circadian rhythms in rat mid-brain and caudate nucleus biogenic amine levels.
    Friedman AH; Walker CA
    J Physiol; 1968 Jul; 197(1):77-85. PubMed ID: 5675092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rat brain amines, blood histamine and glucose levels in relationship to circadian changes in sleep induced by pentobarbitone sodium.
    Friedman AH; Walker CA
    J Physiol; 1969 May; 202(1):133-46. PubMed ID: 5770871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twenty-four hour rhythms of norepinephrine and serotonin in nucleus suprachiasmaticus, raphe nuclei, and locus coeruleus in the rat.
    Semba J; Toru M; Mataga N
    Sleep; 1984; 7(3):211-8. PubMed ID: 6207582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gamma-butyrolactone sleep: A 24-hour rhythm paralleling normal sleep in the rat and CNS amine changes.
    Speciale SG; Friedman AH
    Pharmacol Biochem Behav; 1975; 3(5):761-4. PubMed ID: 1208618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of chlorpromazine on the metabolism of catecholamines in dog brain.
    Guldberg HC; Yates CM
    Br J Pharmacol; 1969 Jul; 36(3):535-48. PubMed ID: 5789808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian rhythm of blood ethanol clearance rates in rats: response to reversal of the L/D regimen and to continuous darkness and continuous illumination.
    Sturtevant RP; Garber SL
    Chronobiol Int; 1988; 5(2):137-48. PubMed ID: 3401979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The acute toxicity of drugs acting at cholinoceptive sites and twenty-four hour rhythms in brain acetylcholine.
    Friedman AH; Walker CA
    Arch Toxikol; 1972; 29(1):39-49. PubMed ID: 5045936
    [No Abstract]   [Full Text] [Related]  

  • 9. Diurnal variations in plasma corticosterone and growth hormone as corrlelated with regional variations in norepinephrine, dopamine and serotonin content of rat brain.
    Simon ML; George R
    Neuroendocrinology; 1975; 17(2):125-38. PubMed ID: 1169697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of circadian disruption on neurotransmitter levels, physiological indexes, and behaviour in rats.
    Matsumura T; Nakagawa H; Suzuki K; Ninomiya C; Ishiwata T
    Chronobiol Int; 2015; 32(10):1449-57. PubMed ID: 26595278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian rhythms and seizure susceptibility: effects of manipulations of light cycles on susceptibility to audiogenic seizures and on levels of 5-hydroxytryptamine and norepinephrine in brain.
    Schreiber RA; Schlesinger K
    Physiol Behav; 1972 Apr; 8(4):699-703. PubMed ID: 5038139
    [No Abstract]   [Full Text] [Related]  

  • 12. Circadian rhythms of chicken brain temperatures.
    Aschoff C; Aschoff J; von Saint Paul U
    J Physiol; 1973 Apr; 230(1):103-13. PubMed ID: 4702413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Analysis of monoamines of the locus ceruleus and other cerebral structures by thin layer chromatography].
    Gérardy J; Quinaux N; Maeda T; Dresse A
    Arch Int Pharmacodyn Ther; 1969 Feb; 177(2):492-6. PubMed ID: 5807181
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of electroconvulsive shock and prior stress on brain amine levels.
    Nielson HC; Fleming RM
    Exp Neurol; 1968 Jan; 20(1):21-30. PubMed ID: 5300035
    [No Abstract]   [Full Text] [Related]  

  • 15. [Regional distribution of histamine in the rat brain].
    Rönnberg AL; Schwartz JC
    C R Acad Hebd Seances Acad Sci D; 1969 May; 268(19):2376-9. PubMed ID: 4978075
    [No Abstract]   [Full Text] [Related]  

  • 16. Immunohistochemical studies on cholecystokinin (CCK)-immunoreactive neurons in the rat using sequence specific antisera and with special reference to the caudate nucleus and primary sensory neurons.
    Hökfelt T; Herrera-Marschitz M; Seroogy K; Ju G; Staines WA; Holets V; Schalling M; Ungerstedt U; Post C; Rehfeld JF
    J Chem Neuroanat; 1988; 1(1):11-51. PubMed ID: 3077312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lower entrainable limit of rat circadian rhythm to sinusoidal light intensity cycles: a preliminary study.
    Usui S; Okazaki T; Takahashi Y
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):215-7. PubMed ID: 10459692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging and diurnal rhythms of pineal serotonin, 5-hydroxyindoleacetic acid, norepinephrine, dopamine and serum melatonin in the male rat.
    Tang F; Hadjiconstantinou M; Pang SF
    Neuroendocrinology; 1985 Feb; 40(2):160-4. PubMed ID: 2579346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily fluctuation (circadian and ultradian) in biogenic amines of the rat brain.
    Scheving LE; Harrison WH; Gordon P; Pauly JE
    Am J Physiol; 1968 Jan; 214(1):166-73. PubMed ID: 5634522
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparison of synchronization of circadian corticosteroid rhythms by photoperiod and food.
    Krieger DT; Hauser H
    Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1577-81. PubMed ID: 274743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.