These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 5675410)

  • 1. Correlated morphological and physiological studies on isolated single muscle fibers. II. The properties of the crayfish transverse tubular system: localization of the sites of reversible swelling.
    Brandt PW; Reuben JP; Grundfest H
    J Cell Biol; 1968 Jul; 38(1):115-29. PubMed ID: 5675410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated morphological and physiological studies on isolated single muscle fibers. I. Fine structure of the crayfish muscle fiber.
    Brandt PW; Reuben JP; Girardier L; Grundfest H
    J Cell Biol; 1965 Jun; 25(3):Suppl:233-60. PubMed ID: 5841634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EVIDENCE FOR ANION-PERMSELECTIVE MEMBRANE IN CRAYFISH MUSCLE FIBERS AND ITS POSSIBLE ROLE IN EXCITATION-CONTRACTION COUPLING.
    GIRARDIER L; REUBEN JP; BRANDT PW; GRUNDFEST H
    J Gen Physiol; 1963 Sep; 47(1):189-214. PubMed ID: 14060445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of the mouse during postnatal development.
    Luff AR; Atwood HL
    J Cell Biol; 1971 Nov; 51(21):369-83. PubMed ID: 5112650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WATER TRANSFER AND CELL STRUCTURE IN ISOLATED CRAYFISH MUSCLE FIBERS.
    REUBEN JP; GIRARDIER L; GRUNDFEST H
    J Gen Physiol; 1964 Jul; 47(6):1141-74. PubMed ID: 14192551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils.
    Flucher BE; Takekura H; Franzini-Armstrong C
    Dev Biol; 1993 Nov; 160(1):135-47. PubMed ID: 8224530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sarcoplasmic reticulum, the T system, and the motor terminals of slow and twitch muscle fibers in the garter snake.
    Hess A
    J Cell Biol; 1965 Aug; 26(2):467-76. PubMed ID: 5893685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromechanical coupling in tubular muscle fibers. I. The organization of tubular muscle fibers in the scorpion Leiurus quinquestriatus.
    Gilai A; Parnas I
    J Cell Biol; 1972 Mar; 52(3):626-38. PubMed ID: 5009524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invaginated membrane in crustacean tonic muscle fibers: estimates of membrane capacitance.
    Rossner KL; Sherman RG
    Am J Physiol; 1978 Nov; 235(5):C220-6. PubMed ID: 727244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcoplasmic reticulum of an unusually fast-acting crustacean muscle.
    Rosenbluth J
    J Cell Biol; 1969 Aug; 42(2):534-47. PubMed ID: 5792338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peeled mammalian skeletal muscle fibers. Possible stimulation of Ca2+ release via a transverse tubule-sarcoplasmic reticulum mechanism.
    Donaldson SK
    J Gen Physiol; 1985 Oct; 86(4):501-25. PubMed ID: 4056734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium concentration changes in the transverse tubules of vertebrate skeletal muscle.
    Almers W
    Fed Proc; 1980 Apr; 39(5):1527-32. PubMed ID: 7364047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of caffeine on crayfish muscle fibers. I. Activation of contraction and induction of Ca spike electrogenesis.
    Chiarandini DJ; Reuben JP; Brandt PW; Grundfest H
    J Gen Physiol; 1970 May; 55(5):640-64. PubMed ID: 5443468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible vacuolation of T-tubules in skeletal muscle: mechanisms and implications for cell biology.
    Krolenko SA; Lucy JA
    Int Rev Cytol; 2001; 202():243-98. PubMed ID: 11061566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible morphological changes in the contractile sphere of crayfish muscle fibers.
    Forssmann WG; Brandt PW; Reuben JP; Grundfest H
    J Mechanochem Cell Motil; 1974 Mar; 2(4):287-93. PubMed ID: 4847298
    [No Abstract]   [Full Text] [Related]  

  • 16. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. Are caveolae the mouths of the transverse tubule system?
    Zampighi G; Vergara J; Ramón F
    J Cell Biol; 1975 Mar; 64(3):734-40. PubMed ID: 1080153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze fracture of skeletal muscle from the Tarantula spider. Structural differentiations of sarcoplasmic reticulum and transverse tubular system membranes.
    Franzini-Armstron C
    J Cell Biol; 1974 May; 61(2):501-13. PubMed ID: 4827910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure of the myotendinous junction and "terminal coupling" in the skeletal muscle of the lamprey, Lampetra japonica.
    Nakao T
    Anat Rec; 1975 Jul; 182(3):321-37. PubMed ID: 1155802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mode of transverse spread of contraction initiated by local activation in single frog muscle fibers.
    Sugi H; Ochi R
    J Gen Physiol; 1967 Oct; 50(9):2167-76. PubMed ID: 6064146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The myofilament lattice: studies on isolated fibers. I. The constancy of the unit-cell volume with variation in sarcomere length in a lattice in which the thin-to-thick myofilament ratio is 6:1.
    April EW; Brandt PW; Elliott GF
    J Cell Biol; 1971 Oct; 51(1):72-82. PubMed ID: 5111882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.