These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 5675502)

  • 1. Method for measuring microbial growth in rumen content.
    Walker DJ; Nader CJ
    Appl Microbiol; 1968 Aug; 16(8):1124-31. PubMed ID: 5675502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial phospholipid synthesis as a marker for microbial protein synthesis in the rumen.
    Bucholtz HF; Bergen WG
    Appl Microbiol; 1973 Apr; 25(4):504-13. PubMed ID: 4699214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of ruminal microbial protein and volatile fatty acid production in vitro.
    Harmeyer J; Martens H; Naga MA
    J Dairy Sci; 1976 Jul; 59(7):1340-1. PubMed ID: 950401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameters of rumen fermentation in a continuously fed sheep: evidence of a microbial rumination pool.
    Hungate RE; Reichl J; Prins R
    Appl Microbiol; 1971 Dec; 22(6):1104-13. PubMed ID: 5167618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a method of measuring fermentation rates and net growth of rumen microorganisms.
    el-Din MZ; el-Shazly K
    Appl Microbiol; 1969 Jun; 17(6):801-4. PubMed ID: 5797937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic fate of cysteine and methionine in rumen digesta.
    Nader CJ; Walker DJ
    Appl Microbiol; 1970 Nov; 20(5):677-81. PubMed ID: 5485079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some factors affecting fermentation capacity and net growth of rumen microorganisms.
    el-Kin MZ; el-Shazly K
    Appl Microbiol; 1969 Sep; 18(3):313-7. PubMed ID: 5373672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In vitro estimation using radioactive phosphorus of the phosphorus requirements of rumen microorganisms].
    Durand M; Beaumatin P; Dumay C
    Reprod Nutr Dev (1980); 1983; 23(4):727-39. PubMed ID: 6351207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ammonia concentration of rumen microbial protein production in vitro.
    Satter LD; Slyter LL
    Br J Nutr; 1974 Sep; 32(2):199-208. PubMed ID: 4472574
    [No Abstract]   [Full Text] [Related]  

  • 10. Microbial protein synthesis in cattle given roughage-concentrate and all-concentrate diets: the use of 2,6-diaminopimelic acid, 2-aminoethylphosphonic acid and 35S as markers.
    Whitelaw FG; Eadie JM; Bruce LA; Shand WJ
    Br J Nutr; 1984 Sep; 52(2):249-60. PubMed ID: 6089863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of an abrupt change in ration from all roughage to high concentrate upon rumen microbial numbers in sheep.
    Grubb JA; Dehority BA
    Appl Microbiol; 1975 Sep; 30(3):404-12. PubMed ID: 1180549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of substrate and microbial interaction on efficiency of rumen microbial growth.
    Demeyer D; Van Nevel C
    Reprod Nutr Dev (1980); 1986; 26(1B):161-79. PubMed ID: 3010406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of molybdenum on the conversion of sulphate to sulphide and microbial-protein-sulphur in the rumen of sheep.
    Gawthorne JM; Nader CJ
    Br J Nutr; 1976 Jan; 35(1):11-23. PubMed ID: 1244837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of methods for the estimation of the proportion of microbial nitrogen in duodenal digesta, and of correction for microbial contamination in nylon bags incubated in the rumen of sheep.
    Kennedy PM; Hazlewood GP; Milligan LP
    Br J Nutr; 1984 Sep; 52(2):403-17. PubMed ID: 6477868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pH buffering capacity and sources of dietary sulfur on rumen fermentation, sulfide production, methane production, sulfate reducing bacteria, and total Archaea in in vitro rumen cultures.
    Wu H; Meng Q; Yu Z
    Bioresour Technol; 2015 Jun; 186():25-33. PubMed ID: 25797103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruminal microbial yields: factors influencing synthesis and bypass.
    Owens FN; Isaacson HR
    Fed Proc; 1977 Feb; 36(2):198-202. PubMed ID: 838090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of rumen microbial growth in vitro from 32P-labelled phosphate incorporation.
    van Nevel CJ; Demeyer DI
    Br J Nutr; 1977 Jul; 38(1):101-14. PubMed ID: 889765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The effect of cadmium on the protozoan population and rumen fermentation of feed in an artificial rumen].
    Jalc D; Kisidayová S; Siroka P; Sviatko P
    Vet Med (Praha); 1994; 39(1):11-22. PubMed ID: 8154089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic changes in the concentrations of micro-organisms in the rumen of a sheep fed a limited ration every three hours.
    Warner AC
    J Gen Microbiol; 1966 Nov; 45(2):237-41. PubMed ID: 5969751
    [No Abstract]   [Full Text] [Related]  

  • 20. [Effect of the content of plant crude protein in the ration on the utilization of urea by the milk cow. 1. Nitrogen digestibility and utilization of urea for bacterial protein synthesis in the rumen].
    Voigt J; Piatkowski B; Krawielitzki R; Sommer A; Ceresnáková Z; Engelmann H; Vancisin J; Girschewski H; Chrastinová L
    Arch Tierernahr; 1983 May; 33(4-5):327-40. PubMed ID: 6615228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.