These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 5675505)

  • 1. Isolation and characterization of a cellulose-utilizing bacterium.
    Han YW; Srinivasan VR
    Appl Microbiol; 1968 Aug; 16(8):1140-5. PubMed ID: 5675505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies in aerobic cellulose-decomposing bacteria. II. Isolation and distribution in the soils of Egypt.
    Taha SM; Zayed MN; Gamal-el-Din H
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1971; 126(2):115-20. PubMed ID: 5172304
    [No Abstract]   [Full Text] [Related]  

  • 3. Resuscitation of viable but non-culturable bacteria to enhance the cellulose-degrading capability of bacterial community in composting.
    Su X; Zhang S; Mei R; Zhang Y; Hashmi MZ; Liu J; Lin H; Ding L; Sun F
    Microb Biotechnol; 2018 May; 11(3):527-536. PubMed ID: 29536669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulolytic activity of Thermomonospora curvata: optimal assay conditions, partial purification, and product of the cellulase.
    Stutzenberger FJ
    Appl Microbiol; 1972 Jul; 24(1):83-90. PubMed ID: 5057375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Screening for cellulolytic bacteria with the cellulose-azure test (author's transl)].
    Deschamps AM; Lebeault JM
    Ann Microbiol (Paris); 1980; 131(1):77-81. PubMed ID: 6987936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies in aerobic cellulose-decomposing bacteria. 3. The cellulolytic activity of Egyptian soils.
    Zayed MN; Taha SM; Gamal-el-Din H
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1971; 126(2):121-9. PubMed ID: 5172305
    [No Abstract]   [Full Text] [Related]  

  • 7. The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CM126 isolated from municipal sewage sludge.
    Nitisinprasert S; Temmes A
    J Appl Bacteriol; 1991 Aug; 71(2):154-61. PubMed ID: 1917724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies in aerobic cellulose-decomposing bacteria. I. Evaluation of media for enumeration.
    Zayed MN; Taha SM; Gamal-el-Din H
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 125(1):49-54. PubMed ID: 4925947
    [No Abstract]   [Full Text] [Related]  

  • 9. Enzymatic saccharification of sugar cane bagasse by continuous xylanase and cellulase production from cellulomonas flavigena PR-22.
    Rojas-Rejón ÓA; Poggi-Varaldo HM; Ramos-Valdivia AC; Ponce-Noyola T; Cristiani-Urbina E; Martínez A; de la Torre M
    Biotechnol Prog; 2016 Mar; 32(2):321-6. PubMed ID: 26701152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulolytic bacteria associated with sloughing spoilage of California ripe olives.
    Patel IB; Vaughn RH
    Appl Microbiol; 1973 Jan; 25(1):62-9. PubMed ID: 4568890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Isolation, identification and cellulase production of a cellulolytic bacterium from intestines of giant panda].
    Fan C; Li S; Li C; Ma S; Zou L; Wu Q
    Wei Sheng Wu Xue Bao; 2012 Sep; 52(9):1113-21. PubMed ID: 23236845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic and anaerobic cellulase production by Cellulomonas uda.
    Poulsen HV; Willink FW; Ingvorsen K
    Arch Microbiol; 2016 Oct; 198(8):725-35. PubMed ID: 27154570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis.
    Lo YC; Su YC; Chen CY; Chen WM; Lee KS; Chang JS
    Bioresour Technol; 2009 Dec; 100(23):5802-7. PubMed ID: 19604692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides.
    Schellenberger S; Drake HL; Kolb S
    FEMS Microbiol Lett; 2012 Feb; 327(1):60-5. PubMed ID: 22098368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production.
    Saratale GD; Saratale RG; Lo YC; Chang JS
    Biotechnol Prog; 2010; 26(2):406-16. PubMed ID: 19941342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural diversity and efficacy of culturable cellulose decomposing bacteria isolated from rice-pulse resource conservation practices.
    Dash PK; Bhattacharyya P; Shahid M; Roy PS; Padhy SR; Swain CK; Kumar U; Kumar A; Gautam P; Lal B; Panneerselvam P; Nayak AK
    J Basic Microbiol; 2019 Oct; 59(10):963-978. PubMed ID: 31410860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and Screening of Cellulose-Degrading Microorganisms from Different Ecological Niches.
    Kameshwar AKS; Qin W
    Methods Mol Biol; 2018; 1796():47-56. PubMed ID: 29856045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the mechanism of enzymatic hydrolysis of cellulosic substances.
    Ghose TK; Bisaria VS
    Biotechnol Bioeng; 1979 Jan; 21(1):131-46. PubMed ID: 106903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample.
    Lv W; Yu Z
    J Appl Microbiol; 2013 Apr; 114(4):1001-7. PubMed ID: 23279216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting cellulolysis by Ruminococcus albus.
    Smith WR; Yu I; Hungate RE
    J Bacteriol; 1973 May; 114(2):729-37. PubMed ID: 4735890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.