BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 5677011)

  • 21. Specificity and mechanism of clostripain catalysis.
    Cole PW; Murakami K; Inagami T
    Biochemistry; 1971 Nov; 10(23):4246-52. PubMed ID: 5126938
    [No Abstract]   [Full Text] [Related]  

  • 22. The transient inactivation of trypsin by mild acetylation with N-acetylimidazole.
    Houston LL; Walsh KA
    Biochemistry; 1970 Jan; 9(1):156-66. PubMed ID: 5460783
    [No Abstract]   [Full Text] [Related]  

  • 23. Guanidination of lysine-15 in the active site of the basic pancreatic trypsin inhibitor. Implications for complex formation with trypsin and chymotrypsin.
    Vincent JP; Schweitz H; Lazdunski M
    Eur J Biochem; 1974 Mar; 42(2):505-10. PubMed ID: 4857287
    [No Abstract]   [Full Text] [Related]  

  • 24. The conformational properties of the basic pancreatic trypsin-inhibitor.
    Vincent JP; Chicheportiche R; Lazdunski M
    Eur J Biochem; 1971 Dec; 23(3):401-11. PubMed ID: 5167778
    [No Abstract]   [Full Text] [Related]  

  • 25. Elaborate manifold of short hydrogen bond arrays mediating binding of active site-directed serine protease inhibitors.
    Katz BA; Elrod K; Verner E; Mackman RL; Luong C; Shrader WD; Sendzik M; Spencer JR; Sprengeler PA; Kolesnikov A; Tai VW; Hui HC; Breitenbucher JG; Allen D; Janc JW
    J Mol Biol; 2003 May; 329(1):93-120. PubMed ID: 12742021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determiniation of trypsin-inhibitor complex dissociation by use of the active site titrant, p-nitrophenyl p'-guanidinobenzoate.
    Zahnley JC; Davis JG
    Biochemistry; 1970 Mar; 9(6):1428-33. PubMed ID: 5461483
    [No Abstract]   [Full Text] [Related]  

  • 27. The structural properties of trypsinogen and trypsin. Alkylation and oxidation of methionines.
    Holeysovsky V; Lazdunski M
    Biochim Biophys Acta; 1968 Apr; 154(3):457-67. PubMed ID: 5689847
    [No Abstract]   [Full Text] [Related]  

  • 28. The preparation of anhydro-trypsin and its reactivity with naturally occurring proteinase inhibitors.
    Ako H; Foster RJ; Ryan CA
    Biochem Biophys Res Commun; 1972 Jun; 47(6):1402-7. PubMed ID: 5064765
    [No Abstract]   [Full Text] [Related]  

  • 29. The trypsin-catalyzed hydrolysis of some L-alpha-amino-lacking substrates.
    Kobayashi R; Ishii S
    J Biochem; 1974 Apr; 75(4):825-35. PubMed ID: 4858776
    [No Abstract]   [Full Text] [Related]  

  • 30. Inhibition studies of soybean trypsin-like enzyme.
    Nishikata M
    J Biochem; 1985 Jun; 97(6):1541-9. PubMed ID: 4040908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of alkylation of rabbit muscle glyceraldehyde 3-phosphate dehydrogenase.
    MacQuarrie RA; Bernhard SA
    Biochemistry; 1971 Jun; 10(13):2456-66. PubMed ID: 4326767
    [No Abstract]   [Full Text] [Related]  

  • 32. Highly selective mechanism-based thrombin inhibitors: structures of thrombin and trypsin inhibited with rigid peptidyl aldehydes.
    Krishnan R; Zhang E; Hakansson K; Arni RK; Tulinsky A; Lim-Wilby MS; Levy OE; Semple JE; Brunck TK
    Biochemistry; 1998 Sep; 37(35):12094-103. PubMed ID: 9724521
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamics of the hydrophobic interaction in the active center of trypsin. Investigation with amidines and guanidines.
    Mares-Guia M; Figueiredo AF
    Biochemistry; 1970 Aug; 9(16):3223-7. PubMed ID: 5489774
    [No Abstract]   [Full Text] [Related]  

  • 34. Specificity in the alkylation of serine at the active site of alpha-chymotrypsin by aromatic alpha-bromo amides.
    Lawson WB
    Biochemistry; 1980 May; 19(10):2140-4. PubMed ID: 6769471
    [No Abstract]   [Full Text] [Related]  

  • 35. Evidence for hemiketals as intermediates in the inactivation of serine proteinases with halomethyl ketones.
    McMurray JS; Dyckes DF
    Biochemistry; 1986 Apr; 25(8):2298-301. PubMed ID: 3518799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single peptide bond hydrolysis/resynthesis in squash inhibitors of serine proteinases. 1. Kinetics and thermodynamics of the interaction between squash inhibitors and bovine beta-trypsin.
    Otlewski J; Zbyryt T
    Biochemistry; 1994 Jan; 33(1):200-7. PubMed ID: 8286341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The reactive site of eggplant trypsin inhibitor.
    Yamada M; Tashiro M; Yamaguchi H; Yamada H; Ibuki F
    J Biochem; 1976 Dec; 80(6):1293-7. PubMed ID: 14122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on soybean trypsin inhibitors. 1. Fragmentation of soybean trypsin inhibitor (Kunitz) by limited proteolysis and by chemical cleavage.
    Koide T; Ikenaka T
    Eur J Biochem; 1973 Feb; 32(3):401-7. PubMed ID: 4734967
    [No Abstract]   [Full Text] [Related]  

  • 39. The relation of the -amino group of trypsin to enzyme function and zymogen activation.
    Robinson NC; Neurath H; Walsh KA
    Biochemistry; 1973 Jan; 12(3):420-6. PubMed ID: 4683488
    [No Abstract]   [Full Text] [Related]  

  • 40. Inactivation of enzymatically modified trypsin inhibitors upon chemical modification of the -amino group in the reactive site.
    Kowalski D; Laskowski M
    Biochemistry; 1972 Aug; 11(18):3451-9. PubMed ID: 5066441
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.