These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 5681507)
21. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. Ornston LN; Stanier RY J Biol Chem; 1966 Aug; 241(16):3776-86. PubMed ID: 5916391 [No Abstract] [Full Text] [Related]
22. Identification and characterization of o-xylene-degrading Rhodococcus spp. which were dominant species in the remediation of o-xylene-contaminated soils. Taki H; Syutsubo K; Mattison RG; Harayama S Biodegradation; 2007 Feb; 18(1):17-26. PubMed ID: 16485082 [TBL] [Abstract][Full Text] [Related]
23. Catabolism of 2,4,5-trimethyoxybenzoic acid and 3-methoxycrotonic acid. Lee YL; Sparnins VL; Dagley S Appl Environ Microbiol; 1978 Apr; 35(4):817-9. PubMed ID: 646361 [TBL] [Abstract][Full Text] [Related]
29. The degradation of trans-ferulic acid by Pseudomonas acidovorans. Toms A; Wood JM Biochemistry; 1970 Jan; 9(2):337-43. PubMed ID: 4312851 [No Abstract] [Full Text] [Related]
30. Simultaneous biodegradation of benzene, toluene, and p-xylene in a two-phase partitioning bioreactor: concept demonstration and practical application. Collins LD; Daugulis AJ Biotechnol Prog; 1999; 15(1):74-80. PubMed ID: 9933516 [TBL] [Abstract][Full Text] [Related]
31. Oxidative metabolism of protocatechuic acid by certain soil pseudomonads: a new ring-fission mechanism. RIBBONS DW; EVANS WC Biochem J; 1962 Jun; 83(3):482-92. PubMed ID: 14491821 [No Abstract] [Full Text] [Related]
32. [Microbiological transformation of organic compounds in co-oxidation conditions]. Skriabin GK; Golovleva LA Izv Akad Nauk SSSR Biol; 1972; 2():232-44. PubMed ID: 4623307 [No Abstract] [Full Text] [Related]
33. Biodehalogenation. The metabolism of the nematocides cis- and trans-3-chloroallyl alcohol by a bacterium ioolated from soil. Belser NO; Castro CE J Agric Food Chem; 1971; 19(1):23-6. PubMed ID: 5573233 [No Abstract] [Full Text] [Related]
34. Characterization of a novel TOL-like plasmid from Pseudomonas putida involved in 1,2,4-trimethylbenzene degradation. Bestetti G; Galli E J Bacteriol; 1987 Apr; 169(4):1780-3. PubMed ID: 3558324 [TBL] [Abstract][Full Text] [Related]
35. The TOL plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake. Kasai Y; Inoue J; Harayama S J Bacteriol; 2001 Nov; 183(22):6662-6. PubMed ID: 11673437 [TBL] [Abstract][Full Text] [Related]
36. Microbiological transformations of terpenes. 8. Fermentation of limonene by a soil pseudomonad. Dhavalikar RS; Bhattacharyya PK Indian J Biochem; 1966 Sep; 3(3):144-57. PubMed ID: 4227570 [No Abstract] [Full Text] [Related]
37. Metapyrocatechase. 3. Substrate specificity and mode of ring fission. Nozaki M; Kotani S; Ono K; Seno S Biochim Biophys Acta; 1970 Nov; 220(2):213-23. PubMed ID: 5487880 [No Abstract] [Full Text] [Related]
38. Metabolism of pentachlorophenol by a soil microbe. Suzuki T J Environ Sci Health B; 1977; 12(2):113-27. PubMed ID: 874293 [TBL] [Abstract][Full Text] [Related]
39. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications. Sala-Trepat JM; Murray K; Williams PA Eur J Biochem; 1972 Jul; 28(3):347-56. PubMed ID: 4342908 [No Abstract] [Full Text] [Related]
40. Metabolism of monoterpene alcohol, linalool, by a soil pseudomonad. Madyastha K; Bhattacharyya PK; Vaidyanathan CS Can J Microbiol; 1977 Mar; 23(3):230-9. PubMed ID: 851909 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]