These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 5682453)
1. The role of arene oxide-oxepin systems in the metabolism of aromatic substrates. 3. Formation of 1,2-naphthalene oxide from naphthalene by liver microsomes. Jerina DM; Daly JW; Witkop B; Zaltzman-Nirenberg P; Udenfriend S J Am Chem Soc; 1968 Nov; 90(23):6525-7. PubMed ID: 5682453 [No Abstract] [Full Text] [Related]
2. The role of arene oxide-oxepin systems in the metabolism of aromatic substrates. II. Synthesis of 3,4-toluene-4-2H oxide and subsequent "NIH shift" to 4-hydroxytoluene-3-2H. Jerina DM; Daly JW; Witkop B J Am Chem Soc; 1968 Nov; 90(23):6523-5. PubMed ID: 5682452 [No Abstract] [Full Text] [Related]
3. Direct Observation of an Oxepin from a Bacterial Cytochrome P450-Catalyzed Oxidation. Stok JE; Chow S; Krenske EH; Farfan Soto C; Matyas C; Poirier RA; Williams CM; De Voss JJ Chemistry; 2016 Mar; 22(13):4408-12. PubMed ID: 26811874 [TBL] [Abstract][Full Text] [Related]
4. Rearrangement of (1- 2 H)- and (2- 2 H)naphthalene 1,2-oxides to 1-naphthol. Mechanism of the NIH shift. Boyd DR; Daly JW; Jerina DM Biochemistry; 1972 May; 11(10):1961-6. PubMed ID: 5025637 [No Abstract] [Full Text] [Related]
12. Hepatic and pulmonary microsomal metabolism of naphthalene to glutathione adducts: factors affecting the relative rates of conjugate formation. Buckpitt AR; Bahnson LS; Franklin RB J Pharmacol Exp Ther; 1984 Nov; 231(2):291-300. PubMed ID: 6491983 [TBL] [Abstract][Full Text] [Related]
13. Epoxide reductase activity of mammalian liver cytosols and aldehyde oxidase. Hirao Y; Kitamura S; Tatsumi K Carcinogenesis; 1994 Apr; 15(4):739-43. PubMed ID: 8149489 [TBL] [Abstract][Full Text] [Related]
14. An inhibitor of trypsin-like activity in rat liver. Kaye C; Dabich D Proc Soc Exp Biol Med; 1969 Sep; 131(4):1366-8. PubMed ID: 5812000 [No Abstract] [Full Text] [Related]
15. Comparative study on oxidation of aromatic compounds by rat liver and rabbit lung microsomes. Usanov SA; Erjomin AN; Tishchenko IV; Metelitza DI Acta Biol Med Ger; 1982; 41(9):759-69. PubMed ID: 7164696 [TBL] [Abstract][Full Text] [Related]
16. THE OXIDATIVE DEMETHYLATION OF L-PROPOXYPHENE AND L-PROPOXYPHENE N-OXIDE BY RAT LIVER MICROSOMES. MCMAHON RE; SULLIVAN HR Life Sci (1962); 1964 Oct; 3():1167-74. PubMed ID: 14225376 [No Abstract] [Full Text] [Related]
17. Comparison of the arachidonic acid and NADPH-dependent microsomal metabolism of naphthalene and 2-methylnaphthalene and the effect of indomethacin on the bronchiolar necrosis. Buckpitt AR; Bahnson LS; Franklin RB Biochem Pharmacol; 1986 Feb; 35(4):645-50. PubMed ID: 3081009 [TBL] [Abstract][Full Text] [Related]
18. Formation of reactive naphthalene metabolites by target vs non-target tissue microsomes: methods for the separation of three glutathione adducts. Smart G; Buckpitt AR Biochem Pharmacol; 1983 Mar; 32(5):943-6. PubMed ID: 6838644 [No Abstract] [Full Text] [Related]
19. The metabolism of some 4-acetyl-1-naphthyl ethers in the rat and their effect upon liver microsomal oxidation. Howes JF; Hunter WH Biochem Pharmacol; 1968 Aug; 17(8):1655-61. PubMed ID: 5672826 [No Abstract] [Full Text] [Related]
20. 1,2-naphthalene oxide as an intermediate in the microsomal hydroxylation of naphthalene. Jerina DM; Daly JW; Witkop B; Zaltzman-Nirenberg P; Udenfriend S Biochemistry; 1970 Jan; 9(1):147-56. PubMed ID: 5411205 [No Abstract] [Full Text] [Related] [Next] [New Search]