These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 5684378)

  • 1. Relationship between the EEG and reaction time changes upon non-equiprobably distributed foreperiod.
    Angelov A
    Izv Inst Fiziol (Sofiia); 1968; 11():15-26. PubMed ID: 5684378
    [No Abstract]   [Full Text] [Related]  

  • 2. Preparing the heart, eye, and brain: foreperiod length effects in a nonaging paradigm.
    Jennings JR; van der Molen MW; Steinhauer SR
    Psychophysiology; 1998 Jan; 35(1):90-8. PubMed ID: 9499710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the preparatory interval in the relationship between EEG alpha-blocking and reaction time.
    Thompson LW; Botwinick J
    Psychophysiology; 1966 Oct; 3(2):131-42. PubMed ID: 5927828
    [No Abstract]   [Full Text] [Related]  

  • 4. EEG and reaction time changes during intermittent sensory stimulation in humans.
    Fernández-Guardiola A; Mejia Bejarano C; Roldán E; Berman D
    Bol Inst Estud Med Biol Univ Nac Auton Mex; 1965 Aug; 23(2):101-43. PubMed ID: 5295756
    [No Abstract]   [Full Text] [Related]  

  • 5. Being prepared on time: on the importance of the previous foreperiod to current preparation, as reflected in speed, force and preparation-related brain potentials.
    Van der Lubbe RH; Los SA; Jaśkowski P; Verleger R
    Acta Psychol (Amst); 2004 Jul; 116(3):245-62. PubMed ID: 15222969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diurnal time courses in psychomotor performance and waking EEG frequencies.
    Lafrance C; Paquet J; Dumont M
    Brain Cogn; 2002; 48(2-3):625-31. PubMed ID: 12030519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural modulation by regularity and passage of time.
    Correa A; Nobre AC
    J Neurophysiol; 2008 Sep; 100(3):1649-55. PubMed ID: 18632896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowing when to respond and the efficiency of the cortical motor command: a Laplacian ERP study.
    Tandonnet C; Burle B; Vidal F; Hasbroucq T
    Brain Res; 2006 Sep; 1109(1):158-63. PubMed ID: 16863647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Microsleep from the electro- and psychophysiological point of view].
    Faber J; Novák M; Svoboda P; Tatarinov V; Tichý T
    Sb Lek; 2003; 104(4):375-85. PubMed ID: 15320529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between characteristics of the prestimulus EEG and extreme sensomotor reaction time.
    Korol'kova TA; Trush VD; Korinevskii AV; Vasil'ev YaA ; Ostrovskaya EE
    Hum Physiol; 1984; 10(6):417-24. PubMed ID: 6544735
    [No Abstract]   [Full Text] [Related]  

  • 11. [Gender differences in the correlation between EEG and parameters of reaction time dependence on sound intensity].
    Lebedeva IS; Iznak AF; Suleĭman KhS
    Fiziol Cheloveka; 1994; 20(3):5-15. PubMed ID: 7958605
    [No Abstract]   [Full Text] [Related]  

  • 12. [Correlation between the characteristics of a presentation EEG and the extreme time of the sensorimotor reaction].
    Korol'kova TA; Trush VD; Korinevskiĭ AV; Vasil'ev IaA; Ostrovskaia EE
    Fiziol Cheloveka; 1984; 10(6):951-8. PubMed ID: 6526193
    [No Abstract]   [Full Text] [Related]  

  • 13. [Structure of correlations between reaction time to tones and the magnitude of EEG spectral density: sex-related differences].
    Lebedeva IS; Iznak AF; Suleĭman KhS
    Fiziol Cheloveka; 1995; 21(3):25-9. PubMed ID: 7641994
    [No Abstract]   [Full Text] [Related]  

  • 14. [Objectivation of presenile and senile degenerative processes using non-invasive procedures (EEG and reaction time test)].
    Klensch H
    Lebensversicher Med; 1980 Sep; 32(5):121-5. PubMed ID: 6110148
    [No Abstract]   [Full Text] [Related]  

  • 15. Temporal decomposition of EEG during a simple reaction time task into stimulus- and response-locked components.
    Takeda Y; Yamanaka K; Yamamoto Y
    Neuroimage; 2008 Jan; 39(2):742-54. PubMed ID: 17950000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CNS arousal and neurobehavioral performance in a short-term sleep restriction paradigm.
    Cote KA; Milner CE; Smith BA; Aubin AJ; Greason TA; Cuthbert BP; Wiebe S; Duffus SE
    J Sleep Res; 2009 Sep; 18(3):291-303. PubMed ID: 19552702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artifact reduction for simultaneous EEG/fMRI recording: adaptive FIR reduction of imaging artifacts.
    Wan X; Iwata K; Riera J; Kitamura M; Kawashima R
    Clin Neurophysiol; 2006 Mar; 117(3):681-92. PubMed ID: 16458593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateralization of event-related beta desynchronization in the EEG during pre-cued reaction time tasks.
    Doyle LM; Yarrow K; Brown P
    Clin Neurophysiol; 2005 Aug; 116(8):1879-88. PubMed ID: 15979401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bilateral mesial temporal lobe epilepsy: comparison of scalp EEG and hippocampal MRI-T2 relaxometry.
    Okujava M; Schulz R; Hoppe M; Ebner A; Jokeit H; Woermann FG
    Acta Neurol Scand; 2004 Sep; 110(3):148-53. PubMed ID: 15285770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dual nature of time preparation: neural activation and suppression revealed by transcranial magnetic stimulation of the motor cortex.
    Davranche K; Tandonnet C; Burle B; Meynier C; Vidal F; Hasbroucq T
    Eur J Neurosci; 2007 Jun; 25(12):3766-74. PubMed ID: 17610596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.