BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 568454)

  • 1. 31P NMR analysis of the surface homogeneity of mixed sphingomyelin-phosphatidylcholine vesicles.
    Castellino FJ
    Arch Biochem Biophys; 1978 Aug; 189(2):465-70. PubMed ID: 568454
    [No Abstract]   [Full Text] [Related]  

  • 2. A nuclear magnetic resonance study of sphingomyelin in bilayer systems.
    Schmidt CF; Barenholz Y; Thompson TE
    Biochemistry; 1977 Jun; 16(12):2649-56. PubMed ID: 889781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingomyelin multiple phase behavior as revealed by multinuclear magnetic resonance spectroscopy.
    Yeagle PL; Hutton WC; Martin RB
    Biochemistry; 1978 Dec; 17(26):5745-50. PubMed ID: 728433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 31P nuclear magnetic resonance spectroscopy of native and recombined lipoproteins.
    Assmann G; Sokoloski EA; Brewer HB
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):549-53. PubMed ID: 4360949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency dependence of 31P NMR linewidths in sonicated phospholipid vesicles: effects of chemical shift anisotropy.
    Berden JA; Cullis PR; Hoult DI; McLaughlin AC; Radda GK; Richards RE
    FEBS Lett; 1974 Sep; 46(1):55-8. PubMed ID: 4425071
    [No Abstract]   [Full Text] [Related]  

  • 6. Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles.
    Michaelson DM; Horwitz AF; Klein MP
    Biochemistry; 1973 Jul; 12(14):2637-45. PubMed ID: 4736410
    [No Abstract]   [Full Text] [Related]  

  • 7. Calcium-induced aggregation and fusion of mixed phosphatidylcholine-phosphatidic acid vesicles as studied by 31P NMR.
    Koter M; de Kruijff B; van Deenen LL
    Biochim Biophys Acta; 1978 Dec; 514(2):255-63. PubMed ID: 737172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface potential effects on metal ion binding to phosphatidylcholine membranes 31P NMR study of lanthanide and calcium ion binding to egg-yolk lecithin vesicles.
    Grasdalen H; Göran Eriksson LE; Westman J; Ehrenberg A
    Biochim Biophys Acta; 1977 Sep; 469(2):151-62. PubMed ID: 561615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-induced phase separation in phosphatidylserine/phosphatidylcholine membranes.
    Tokutomi S; Ohki K; Ohnishi SI
    Biochim Biophys Acta; 1980 Feb; 596(2):192-200. PubMed ID: 6243978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of a relatively fast transbilayer movement of phosphatidylcholine in vesicles. A 13CNMR study.
    De Kruijff B; Wirtz KW
    Biochim Biophys Acta; 1977 Jul; 468(2):318-26. PubMed ID: 560207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The adsorption of divalent cations to phosphatidylcholine bilayer membranes.
    McLaughlin A; Grathwohl C; McLaughlin S
    Biochim Biophys Acta; 1978 Nov; 513(3):338-57. PubMed ID: 718897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolayer coupling in sphingomyelin bilayer systems.
    Schmidt CF; Barenholz Y; Huang C; Thompson TE
    Nature; 1978 Feb; 271(5647):775-7. PubMed ID: 625351
    [No Abstract]   [Full Text] [Related]  

  • 13. The affinity of cholesterol for phosphatidylcholine and sphingomyelin.
    Lange Y; D'Alessandro JS; Small DM
    Biochim Biophys Acta; 1979 Oct; 556(3):388-98. PubMed ID: 486469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of tumbling and lateral diffusion on phosphatidylcholine model membrane 31P-NMR lineshapes.
    Burnell EE; Cullis PR; de Kruijff B
    Biochim Biophys Acta; 1980 Dec; 603(1):63-9. PubMed ID: 7448188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spatial orientation of polar groups on the surface of vesicular lecithin membranes].
    Barsukov LI; Shapiro IuE; Viktorov AV; Bystrov VF; Bergel'son LD
    Dokl Akad Nauk SSSR; 1973 Jan; 208(3):717-20. PubMed ID: 4686296
    [No Abstract]   [Full Text] [Related]  

  • 16. Headgroup conformation and lipid--cholesterol association in phosphatidylcholine vesicles: a 31P(1H) nuclear Overhauser effect study.
    Yeagle PL; Hutton WC; Huang CH; Martin RB
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3477-81. PubMed ID: 1059134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum binding to phosphatidylcholine lipid bilayer membranes: 27Al and 31P NMR spectroscopic studies.
    MacKinnon N; Crowell KJ; Udit AK; Macdonald PM
    Chem Phys Lipids; 2004 Nov; 132(1):23-36. PubMed ID: 15530445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of polysialic acid on molecular dynamics of model membranes studied by 31P NMR spectroscopy.
    Timoszyk A; Gdaniec Z; Latanowicz L
    Solid State Nucl Magn Reson; 2004 Jan; 25(1-3):142-5. PubMed ID: 14698401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrocarbon chains dominate coupling and phase coexistence in bilayers of natural phosphatidylcholines and sphingomyelins.
    Quinn PJ; Wolf C
    Biochim Biophys Acta; 2009 May; 1788(5):1126-37. PubMed ID: 19150608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction of various lanthanide ions and some anions with phosphatidylcholine vesicle membranes. A 31P NMR study of the surface potential effects.
    Westman J; Eriksson LE
    Biochim Biophys Acta; 1979 Oct; 557(1):62-78. PubMed ID: 549644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.