These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 568547)
1. The reactivity of a functional tyrosyl residue in carboxypeptidase B. Nitration of the cadmium enzyme. Zisapel N Eur J Biochem; 1978 Sep; 90(1):199-203. PubMed ID: 568547 [TBL] [Abstract][Full Text] [Related]
2. Chemical modification of carboxypeptidase A crystals. Nitration of tyrosine-248. Muszynska G; Riordan JF Biochemistry; 1976 Jan; 15(1):46-51. PubMed ID: 942853 [TBL] [Abstract][Full Text] [Related]
3. Chemical modification of neutral protease from Bacillus subtilis var. amylosacchariticus with tetranitromethane: assignment of tyrosyl residues nitrated. Kobayashi R; Kanatani A; Yoshimoto T; Tsuru D J Biochem; 1989 Dec; 106(6):1110-3. PubMed ID: 2628428 [TBL] [Abstract][Full Text] [Related]
4. Functional tyrosyl residues of carboxypeptidase A. The effect of protein structure on the reactivity of tyrosine-198. Cueni L; Riordan JF Biochemistry; 1978 May; 17(10):1834-42. PubMed ID: 566110 [TBL] [Abstract][Full Text] [Related]
5. Porcine carboxypeptidase B. Nitration of the functional tyrosyl residue with tetranitromethane. Sokolovsky M Eur J Biochem; 1972 Feb; 25(2):267-73. PubMed ID: 5064743 [No Abstract] [Full Text] [Related]
6. Nitration of the tyrosine residues of porcine pancreatic colipase with tetranitromethane, and properties of the nitrated derivatives. De Caro JD; Behnke WD; Bonicel JJ; Desnuelle PA; Rovery M Biochim Biophys Acta; 1983 Sep; 747(3):253-62. PubMed ID: 6615844 [TBL] [Abstract][Full Text] [Related]
7. The functional tyrosyl residues of carboxypeptidase A. Nitration with tetranitromethane. Riordan JF; Sokolovsky M; Vallee BL Biochemistry; 1967 Nov; 6(11):3609-17. PubMed ID: 6073043 [No Abstract] [Full Text] [Related]
8. Tyrosyl interactions at the active site of carboxypeptidase B. Zisapel N; Mallul Y; Sokolovsky M Int J Pept Protein Res; 1982 May; 19(5):480-6. PubMed ID: 7118417 [TBL] [Abstract][Full Text] [Related]
9. Implication of a tyrosyl residue at the active site of mitochondrial L-malate:NAD+ oxidoreductase. Otwell HB; Yung-Ho Tan A; Friedman ME Biochim Biophys Acta; 1978 Dec; 527(2):309-19. PubMed ID: 728442 [TBL] [Abstract][Full Text] [Related]
10. The interaction of a tyrosyl residue and carboxyl groups in the specific interaction between Streptomyces subtilisin inhibitor and subtilisin BPN'. A chemical modification study. Inouye K; Tonomura B; Hiromi K J Biochem; 1979 May; 85(5):1115-26. PubMed ID: 447612 [TBL] [Abstract][Full Text] [Related]
11. Chemical modification of phosphorylase b by tetranitromethane. Identification of a functional tyrosyl residue. Caruso C; Cacace MG; Di Prisco G Eur J Biochem; 1987 Aug; 166(3):547-52. PubMed ID: 3111849 [TBL] [Abstract][Full Text] [Related]
12. Preferential nitration with tetranitromethane of a specific tyrosine residue in penicillinase from Staphylococcus aureus PCl. Evidence that the preferentially nitrated residue is not part of the active site but that loss of activity is due to intermolecular cross-linking. Bristow AF; Virden R Biochem J; 1978 Feb; 169(2):381-8. PubMed ID: 629760 [TBL] [Abstract][Full Text] [Related]
13. Spectrophotometric pH titrations and nitration with tetranitromethane of the tyrosyl residues in yeast phosphoglycerate kinase. Hjelmgren T; Arvidsson L; Larsson-Raźnikiewicz M Biochim Biophys Acta; 1976 Sep; 445(2):342-9. PubMed ID: 8144 [TBL] [Abstract][Full Text] [Related]
14. The role of a tyrosyl residue in the mechanism of action of carboxypeptidase B: luminescence studies. Shaklai N; Zisapel N; Sokolovsky M Proc Natl Acad Sci U S A; 1973 Jul; 70(7):2025-8. PubMed ID: 4516202 [TBL] [Abstract][Full Text] [Related]
15. Role of tyrosine residues on structure-function of fructose-1,6-biphosphate aldolase from Ceratitis capitata. Gavilanes FG; Gavilanes JG Int J Pept Protein Res; 1982 Feb; 19(2):137-42. PubMed ID: 7118391 [TBL] [Abstract][Full Text] [Related]
16. The phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus. Complete tyrosine assignments in the 1H nuclear-magnetic-resonance spectrum of the phosphocarrier protein HPr. Schmidt-Aderjan U; Rösch P; Frank R; Hengstenberg W Eur J Biochem; 1979 May; 96(1):43-8. PubMed ID: 456367 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of enolase with tetranitromethane. Wolna E Acta Biochim Pol; 1980; 27(3-4):365-70. PubMed ID: 7269977 [TBL] [Abstract][Full Text] [Related]
18. Chemical modification of human alpha 1-proteinase inhibitor by tetranitromethane. Structure-function relationship. Mierzwa S; Chan SK Biochem J; 1987 Aug; 246(1):37-42. PubMed ID: 3499901 [TBL] [Abstract][Full Text] [Related]
19. pK values for active site residues of carboxypeptidase A. Mock WL; Tsay JT J Biol Chem; 1988 Jun; 263(18):8635-41. PubMed ID: 3379037 [TBL] [Abstract][Full Text] [Related]
20. Reaction of tetranitromethane with lutropin, oxytocin, and vasopressin. Burleigh BD; Liu WK; Ward DN J Biol Chem; 1976 Jan; 251(2):308-15. PubMed ID: 1245474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]