BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 568626)

  • 1. Formation and utilization of novel high energy phosphate reservoirs in Ehrlich ascites tumor cells. Cyclocreatine-3-P and creatine-P.
    Annesley TM; Walker JB
    J Biol Chem; 1978 Nov; 253(22):8120-5. PubMed ID: 568626
    [No Abstract]   [Full Text] [Related]  

  • 2. Cyclocreatine phosphate as a substitute for creatine phosphate in vertebrate tissues. Energistic considerations.
    Annesley TM; Walker JB
    Biochem Biophys Res Commun; 1977 Jan; 74(1):185-90. PubMed ID: 836276
    [No Abstract]   [Full Text] [Related]  

  • 3. Conversion of dietary N-Ethylguanidinoacetate by Ehrlich ascites tumor cells and animal tissues to a functionally active analog of creatine phosphate.
    Roberts JJ; Walker JB
    Arch Biochem Biophys; 1982 May; 215(2):564-70. PubMed ID: 7092241
    [No Abstract]   [Full Text] [Related]  

  • 4. Phosphocreatine in Ehrlich ascites tumor cells detected by noninvasive 31P NMR spectroscopy.
    Yushok WD; Gupta RK
    Biochem Biophys Res Commun; 1980 Jul; 95(1):73-81. PubMed ID: 7417272
    [No Abstract]   [Full Text] [Related]  

  • 5. Accumulation of analgo of phosphocreatine in muscle of chicks fed 1-carboxymethyl-2-iminoimidazolidine (cyclocreatine).
    Griffiths GR; Walker JB
    J Biol Chem; 1976 Apr; 251(7):2049-54. PubMed ID: 1270421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of a supplemental long time-constant reservoir of high energy phosphate by brain in vivo and in vitro and its reversible depletion by potassium depolarization.
    Woznicki DT; Walker JB
    J Neurochem; 1979 Jul; 33(1):75-80. PubMed ID: 458473
    [No Abstract]   [Full Text] [Related]  

  • 7. Utilization of cyclocreatine phosphate, and analogue of creatine phosphate, by mouse brain during ischemia and its sparing action on brain energy reserves.
    Woznicki DT; Walker JB
    J Neurochem; 1980 May; 34(5):1247-53. PubMed ID: 7373304
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthesis and accumulation of an extremely stable high-energy phosphate compound by muscle, heart, and brain of animals fed the creatine analog, 1-carboxyethyl-2-iminoimidazolidine (homocyclocreatine).
    Roberts JJ; Walker JB
    Arch Biochem Biophys; 1983 Feb; 220(2):563-71. PubMed ID: 6824340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations on the function of creatine kinase in Ehrlich ascites tumor cells.
    Becker S; Schneider F
    Biol Chem Hoppe Seyler; 1989 Apr; 370(4):357-64. PubMed ID: 2757796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclocreatine phosphate, an analogue of creatine phosphate, does not improve hypoxic tolerance in mice.
    Artru AA; Michenfelder JD
    J Neurochem; 1982 Oct; 39(4):1198-200. PubMed ID: 7119791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creatine and phosphocreatine analogs: anticancer activity and enzymatic analysis.
    Bergnes G; Yuan W; Khandekar VS; O'Keefe MM; Martin KJ; Teicher BA; Kaddurah-Daouk R
    Oncol Res; 1996; 8(3):121-30. PubMed ID: 8823808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine Phosphorylation of Mitochondrial Creatine Kinase 1 Enhances a Druggable Tumor Energy Shuttle Pathway.
    Kurmi K; Hitosugi S; Yu J; Boakye-Agyeman F; Wiese EK; Larson TR; Dai Q; Machida YJ; Lou Z; Wang L; Boughey JC; Kaufmann SH; Goetz MP; Karnitz LM; Hitosugi T
    Cell Metab; 2018 Dec; 28(6):833-847.e8. PubMed ID: 30174304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced ability of skeletal muscle containing cyclocreatine phosphate to sustain ATP levels during ischemia following beta-adrenergic stimulation.
    Turner DM; Walker JB
    J Biol Chem; 1987 May; 262(14):6605-9. PubMed ID: 3571272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolism of skeletal muscle containing cyclocreatine phosphate. Delay in onset of rigor mortis and decreased glycogenolysis in response to ischemia or epinephrine.
    Annesley TM; Walker JB
    J Biol Chem; 1980 May; 255(9):3924-30. PubMed ID: 7372660
    [No Abstract]   [Full Text] [Related]  

  • 15. Protective effect of creatine against inhibition by methylglyoxal of mitochondrial respiration of cardiac cells.
    Roy SS; Biswas S; Ray M; Ray S
    Biochem J; 2003 Jun; 372(Pt 2):661-9. PubMed ID: 12605598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of potassium depletion on the initial kinetics of glycolysis in ascites tumor cells.
    Greenhouse WV; Coe EL
    Biochim Biophys Acta; 1973 Dec; 329(2):183-95. PubMed ID: 4271972
    [No Abstract]   [Full Text] [Related]  

  • 17. The uptake of creatine by various tissues from a mouse bearing tumor cells.
    Yanokura M; Sawai Y; Tsukada K
    Biochim Biophys Acta; 1984 Jan; 797(1):94-8. PubMed ID: 6692010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [NMR spectroscopy of tumors. Effects of subpopulation replacement in a growing tumor].
    Semenova NA; Dubinskiĭ VZ
    Dokl Akad Nauk; 1992; 323(1):169-72. PubMed ID: 1638957
    [No Abstract]   [Full Text] [Related]  

  • 19. Cyclocreatine (1-carboxymethyl-2-iminoimidazolidine) inhibits growth of a broad spectrum of cancer cells derived from solid tumors.
    Lillie JW; O'Keefe M; Valinski H; Hamlin HA; Varban ML; Kaddurah-Daouk R
    Cancer Res; 1993 Jul; 53(13):3172-8. PubMed ID: 8319226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible role of the creatine phosphate-creatine pool in the regulation of the adenylate pool.
    Pezzini A; Conte A; Galbani P; Ronca-Testoni S
    Int J Tissue React; 1988; 10(2):107-10. PubMed ID: 3182186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.