These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 5686284)

  • 1. Spatial relationship between intestinal disaccharidases and the active transport system for sugars.
    Malathi P; Crane RK
    Biochim Biophys Acta; 1968 Sep; 163(2):275-7. PubMed ID: 5686284
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the spatial relationship between intestinal disaccharidases and the phlorizin-sensitive transport of glucose.
    Sacktor B; Wu NC
    Arch Biochem Biophys; 1971 May; 144(1):423-7. PubMed ID: 5117533
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro.
    Crane RK; Forstner G; Eichholz A
    Biochim Biophys Acta; 1965 Nov; 109(2):467-77. PubMed ID: 5867548
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. II. Characteristics of the disaccharidase-related transport system.
    Ramaswamy K; Malathi P; Caspary WF; Crane RK
    Biochim Biophys Acta; 1974 Apr; 345(1):39-48. PubMed ID: 4838205
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. I. Evidence for a disaccharidase-related transport system.
    Malathi P; Ramaswamy K; Caspary WF; Crane RK
    Biochim Biophys Acta; 1973 May; 307(3):613-26. PubMed ID: 4718809
    [No Abstract]   [Full Text] [Related]  

  • 6. Hypothesis for the interaction of phlorizin and phloretin with membrane carriers for sugars.
    Alvarado F
    Biochim Biophys Acta; 1967 Jul; 135(3):483-95. PubMed ID: 6048818
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of intestinal sugar transport by phenolphthalein.
    Adamic S; Bihler I
    Mol Pharmacol; 1967 Mar; 3(2):188-94. PubMed ID: 6040598
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of lithium on intestinal sugar transport.
    Bihler I; Adamic S
    Biochim Biophys Acta; 1967 Jul; 135(3):466-74. PubMed ID: 6048817
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of insulin and experimental diabetes mellitus on the digestive-absorptive function of the small intestine.
    Caspary WF
    Digestion; 1973 Oct; 9(3):248-63. PubMed ID: 4274171
    [No Abstract]   [Full Text] [Related]  

  • 10. [Coupling of disaccharide hydrolysis with absorption of formed glucose in the small intestine in vivo].
    Gruzdkov AA; Gromova LV
    Dokl Akad Nauk; 1995 Jun; 342(6):830-2. PubMed ID: 7580968
    [No Abstract]   [Full Text] [Related]  

  • 11. Changes in the transmural potential difference associated with active hexose absorption during the development of the chick small intestine.
    Hudson DA; Levin RJ
    J Physiol; 1966 Oct; 186(2):112P-113P. PubMed ID: 5972100
    [No Abstract]   [Full Text] [Related]  

  • 12. Na+ -dependent transport in the intestine and other animal tissues.
    Crane RK
    Fed Proc; 1965; 24(5):1000-6. PubMed ID: 5838166
    [No Abstract]   [Full Text] [Related]  

  • 13. Intestinal transport of 3-O-methyl-D-glucose in the normal and alloxan-diabetic rat.
    Flores P; Schedl HP
    Am J Physiol; 1968 Apr; 214(4):725-9. PubMed ID: 5642932
    [No Abstract]   [Full Text] [Related]  

  • 14. Localization of the small-intestinal disaccharidases.
    Dahlqvist A
    Am J Clin Nutr; 1967 Feb; 20(2):81-8. PubMed ID: 4164045
    [No Abstract]   [Full Text] [Related]  

  • 15. Intestinal metabolism and transport of alpha-disaccharide conjugates: the role of disaccharidase in the Na+/glucose cotransporter-mediated transport.
    Mizuma T; Awazu S
    Res Commun Mol Pathol Pharmacol; 1998 Apr; 100(1):43-52. PubMed ID: 9644718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural requirements for active intestinal sugar transport. The involvement of hydrogen bonds at C-1 and C-6 of the sugar.
    Barnett JE; Jarvis WT; Munday KA
    Biochem J; 1968 Aug; 109(1):61-7. PubMed ID: 5669849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal sugar transport: ionic activation and chemical specificity.
    Bihler I
    Biochim Biophys Acta; 1969 Jun; 183(1):169-81. PubMed ID: 5792864
    [No Abstract]   [Full Text] [Related]  

  • 18. Structural requirements for active intestinal transport. Spatial and bonding requirements at C-3 of the sugar.
    Barnett JE; Ralph A; Munday KA
    Biochem J; 1969 Sep; 114(3):569-73. PubMed ID: 5820643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of active intestinal transport of sugars.
    Barnett JE; Ralph A; Munday KA
    Biochem J; 1970 Feb; 116(3):537-8. PubMed ID: 5435694
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on transmural potentials in vitro in relation to intestinal absorption. IV. Phlorizin-sugar interactions in rat gut.
    Lyon I
    Biochim Biophys Acta; 1967 Jul; 135(3):496-506. PubMed ID: 6048819
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.