These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 5688690)

  • 21. [Characteristics of the oxidative metabolism in strains with varying levels of fucidin biosynthesis].
    Gol'dshteĭn VL; Torbochkina LI; Bartoshevich IuE
    Antibiotiki; 1975 Apr; 20(4):333-9. PubMed ID: 2097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Mechanisms of squalene cyclization to tetra- and pentacyclic triterpenes (author's transl)].
    Sliwowski J
    Postepy Biochem; 1974; 20(3):281-302. PubMed ID: 4849151
    [No Abstract]   [Full Text] [Related]  

  • 23. Biosynthetic studies. II. The mode of incorporation of phenylalanine into gliotoxin.
    Bose AK; Knanchandani KS; Tavares R; Funke PT
    J Am Chem Soc; 1968 Jun; 90(13):3593-4. PubMed ID: 5689953
    [No Abstract]   [Full Text] [Related]  

  • 24. Mechanism of urea decomposition by urease-less Torulopsis utilis.
    Tarantowicz-Marek E; Jankowski BJ; Kleczkowski K
    Acta Biochim Pol; 1972; 19(4):325-31. PubMed ID: 4677126
    [No Abstract]   [Full Text] [Related]  

  • 25. The role of substrate structure in the initiation of enzymic cyclization of squalene 2,3-oxide. Studies with 2,3-cis-1'-norsqual ene 2,3-oxide and 2,3-trans-1'-norsqualene 2,3-oxide.
    Clayton RB; van Tamelen EE; Nadeau RG
    J Am Chem Soc; 1968 Jan; 90(3):820-1. PubMed ID: 5638313
    [No Abstract]   [Full Text] [Related]  

  • 26. Minimal substrate structural requirements for lanosterol-squalene 2,3-oxide cyclase action. 10'-norsqualene 2,3-oxide.
    van Tamelen EE; Hanzlik RP; Clayton RB; Burlingame AL
    J Am Chem Soc; 1970 Apr; 92(7):2137-9. PubMed ID: 5435278
    [No Abstract]   [Full Text] [Related]  

  • 27. [Carbohydrate and pyruvic acid degradation pathways in Fusidium coccineum strains with varying levels of antibiotic synthesis].
    Gol'dshteĭn VL; Mironov VA; Bartoshevich IuE; Minina TS
    Antibiotiki; 1976 Oct; 21(10):887-92. PubMed ID: 11736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the metabolic products of Oospora astringenes. 8. Isolation, chemical structure, and biosynthesis of oospolide.
    Nitta K; Yamamoto Y; Tsuda Y
    Chem Pharm Bull (Tokyo); 1970 Mar; 18(3):458-64. PubMed ID: 5463215
    [No Abstract]   [Full Text] [Related]  

  • 29. [Metabolic products of microorganisms. 71. Fusidic acid from dermatophytes and other fungi].
    Haller B; Loeffler W
    Arch Mikrobiol; 1969; 65(2):181-94. PubMed ID: 4988684
    [No Abstract]   [Full Text] [Related]  

  • 30. Biosynthesis of abscissic acid.
    Horgan R; Neill SJ; Walton DC; Griffin D
    Biochem Soc Trans; 1983 Oct; 11(5):553-7. PubMed ID: 6227507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Morphofunctional characteristics of the development of strains of Fusidium coccineum differing in antibiotic activity in stab cultivation].
    Bartoshevich IuE; Zaslavskaia PL
    Mikrobiologiia; 1984; 53(2):266-70. PubMed ID: 6429489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence from mycelial studies for differences in the sterol biosynthetic pathway of Rhizoctonia solani and Phytophthora cinnamomi.
    Wood SG; Gottlieb D
    Biochem J; 1978 Feb; 170(2):343-54. PubMed ID: 637849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protonated amino acid precursor studies on rhodotorulic acid biosynthesis in deuterium oxide media.
    Akers HA; Llinás M; Neilands JB
    Biochemistry; 1972 Jun; 11(12):2283-91. PubMed ID: 5063738
    [No Abstract]   [Full Text] [Related]  

  • 34. Studies in terpenoid biosynthesis. V. Biosynthesis of rosenonolactone.
    Achilladelis B; Hanson JR
    J Chem Soc Perkin 1; 1969; 15():2010-4. PubMed ID: 5387841
    [No Abstract]   [Full Text] [Related]  

  • 35. The biosynthetic origin of the carboxyl oxygen atoms of the carotenoid pigment, torularhodin.
    Simpson KL; Nakayama TO; Chichester CO
    Biochem J; 1964 Sep; 92(3):508-10. PubMed ID: 5891195
    [No Abstract]   [Full Text] [Related]  

  • 36. Enzymic cyclization of trans,trans,trans-18,19-dihydrosqualene 2,3-oxide.
    van Tamelen EE; Sharpless KB; Hanzlik R; Clayton RB; Burlingame AL; Wszolek PC
    J Am Chem Soc; 1967 Dec; 89(26):7150-1. PubMed ID: 6064361
    [No Abstract]   [Full Text] [Related]  

  • 37. Conversion of lanosterol into a compound with the carbon skeleton of fusidic acid.
    Kazlauskas R; Pinhey JT; Simes JJ
    J Chem Soc Perkin 1; 1972; 9():1243-7. PubMed ID: 5064383
    [No Abstract]   [Full Text] [Related]  

  • 38. Biosynthetic studies on gliotoxin using stable isotopes and mass spectral methods.
    Bose AK; Das KG; Funke PT; Kugajevsky I; Shukla OP; Khanchandani KS; Suhadolnik RJ
    J Am Chem Soc; 1968 Feb; 90(4):1038-41. PubMed ID: 5688814
    [No Abstract]   [Full Text] [Related]  

  • 39. Evidence from cell-free systems for differences in the sterol biosynthetic pathway of Rhizoctonia solani and Phytophthora cinnamomi.
    Wood SG; Gottlieb D
    Biochem J; 1978 Feb; 170(2):355-63. PubMed ID: 637850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic products of fungi. XXIX. The structure of aurofusarin. (2).
    Morishita E; Takeda T; Shibata S
    Chem Pharm Bull (Tokyo); 1968 Mar; 16(3):411-3. PubMed ID: 5692581
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.