These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 568927)

  • 1. Addition of mannose to both the amino- and carboxy-terminal properties of type II procollagen occurs without formation of a triple helix.
    Guzman NA; Graves PN; Prockop DJ
    Biochem Biophys Res Commun; 1978 Oct; 84(3):691-8. PubMed ID: 568927
    [No Abstract]   [Full Text] [Related]  

  • 2. High post-translational modification levels in type II procollagen are not a consequence of slow triple-helix formation.
    Keller H; Eikenberry EF; Winterhalter KH; Bruckner P
    Coll Relat Res; 1985 Jun; 5(3):245-51. PubMed ID: 4042601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of type II procollagen to collagen. Extracellular removal of the amino-terminal and carboxy-terminal extensions without a preferential sequence.
    Uitto J; Allan RE; Polak KL
    Eur J Biochem; 1979 Aug; 99(1):97-103. PubMed ID: 573690
    [No Abstract]   [Full Text] [Related]  

  • 4. Biosynthesis of type II collagen. Removal of amino-and carboxy-terminal extensions from procollagen synthesized by chick embryo cartilage cells.
    Uitto J
    Biochemistry; 1977 Jul; 16(15):3421-9. PubMed ID: 407928
    [No Abstract]   [Full Text] [Related]  

  • 5. Formation of the triple helix of type I procollagen in cellulo. Temperature-dependent kinetics support a model based on cis in equilibrium trans isomerization of peptide bonds.
    Bruckner P; Eikenberry EF
    Eur J Biochem; 1984 Apr; 140(2):391-5. PubMed ID: 6714235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of type I procollagen: formation of interchain disulfide bonds before complete hydroxylation of the protein.
    Uitto VJ; Uitto J; Prockop DJ
    Arch Biochem Biophys; 1981 Sep; 210(2):445-54. PubMed ID: 7305337
    [No Abstract]   [Full Text] [Related]  

  • 7. Further studies on the effect of the collagen triple-helix formation on the hydroxylation of lysine and the glycosylations of hydroxylysine in chick-embryo tendon and cartilage cells.
    Oikarinen A; Anttinen H; Kivirikko KI
    Biochem J; 1977 Sep; 166(3):357-62. PubMed ID: 597231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of prevention of procollagen triple-helix formation on proline 3-hydroxylation in freshly isolated chick-embryo tendon cells.
    Majamaa K
    Biochem J; 1981 Apr; 196(1):203-6. PubMed ID: 6272752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The route of secretion of procollagen. The influence of alphaalpha'-bipyridyl, colchicine and antimycin A on the secretory process in embryonic-chick tendon and cartilage cells.
    Harwood R; Grant ME; Jackson DS
    Biochem J; 1976 Apr; 156(1):81-90. PubMed ID: 8039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effects of tunicamycin on procollagen biosynthesis and secretion.
    Tanzer ML; Rowland FN; Murray LW; Kaplan J
    Biochim Biophys Acta; 1977 Nov; 500(1):187-96. PubMed ID: 562681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of amino-terminal and carboxy-terminal extension peptides from procollagen during synthesis of chick embryo tendon collagen.
    Uitto J; Lichtenstein JR
    Biochem Biophys Res Commun; 1976 Jul; 71(1):60-7. PubMed ID: 986819
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of procollagen synthesized by matrix-free cells isolated from chick embryo tendons.
    Uitto J; Lichtenstein JR; Bauer EA
    Biochemistry; 1976 Nov; 15(22):4935-42. PubMed ID: 186099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the glycosylations of collagen hydroxylysine in chick embryo tendon and cartilage cells.
    Anttinen H; Hulkko A
    Biochim Biophys Acta; 1980 Oct; 632(3):417-27. PubMed ID: 7417530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of a peptide from the carboxy-terminal region of chick tendon procollagen type I.
    Olsen BR; Guzman NA; Engel J; Condit C; Aase S
    Biochemistry; 1977 Jun; 16(13):3030-6. PubMed ID: 880293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Procollagen biosynthesis in embryonic chick arteries.
    Schofield JD; Harwood R
    Biochem Soc Trans; 1975; 3(1):143-5. PubMed ID: 1168592
    [No Abstract]   [Full Text] [Related]  

  • 16. The sub-cellular location of inter-chain disulfide bond formation during procollagen biosynthesis by embryonic chick tendon cells.
    Harwood R; Grant ME; Jackson DS
    Biochem Biophys Res Commun; 1973 Dec; 55(4):1188-96. PubMed ID: 4771992
    [No Abstract]   [Full Text] [Related]  

  • 17. Conversion of type II procollagen to collagen in vitro: removal of the carboxy-terminal extension is inhibited by several naturally occurring amino acids, polyamines, and structurally related compounds.
    Ryhänen L; Tan EM; Rantala-Ryhänen S; Uitto J
    Arch Biochem Biophys; 1982 Apr; 215(1):230-6. PubMed ID: 7092227
    [No Abstract]   [Full Text] [Related]  

  • 18. Catalysis by protein disulphide-isomerase of the assembly of trimeric procollagen from procollagen polypeptide chains.
    Forster SJ; Freedman RB
    Biosci Rep; 1984 Mar; 4(3):223-9. PubMed ID: 6722288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underhydroxylated minor cartilage collagen precursors cannot form stable triple helices.
    Clark CC; Richards CF
    Biochem J; 1988 Feb; 250(1):65-70. PubMed ID: 3355524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the transfer of mannose to the extension peptides of procollagen within the cisternae of the rough endoplasmic reticulum.
    Anttinen H; Oikarinen A; Ryhänen L; Kivirikko KI
    FEBS Lett; 1978 Mar; 87(2):222-6. PubMed ID: 631338
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.