These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 5689520)

  • 1. Function of growth factors for rumen microorganisms. II. Metabolic fate of incorporated fatty acids in Selenomonas ruminantium.
    Kanegasaki S; Takahashi H
    Biochim Biophys Acta; 1968 Jan; 152(1):40-9. PubMed ID: 5689520
    [No Abstract]   [Full Text] [Related]  

  • 2. Function of growth factors for rumen microorganisms. I. Nutritional characteristics of Selenomonas ruminantium.
    Kanegasaki S; Takahashi H
    J Bacteriol; 1967 Jan; 93(1):456-63. PubMed ID: 6020417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of propionate formation by Selenomonas ruminantium, a rumen micro-organism.
    Paynter MJ; Elsden SR
    J Gen Microbiol; 1970 Apr; 61(1):1-7. PubMed ID: 5530770
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes.
    ALLISON MJ; BRYANT MP; KATZ I; KEENEY M
    J Bacteriol; 1962 May; 83(5):1084-93. PubMed ID: 13860622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The incorporation of long-chain fatty acids into lipids by rumen bacteria and the effect on biohydrogenation.
    Hawke JC
    Biochim Biophys Acta; 1971 Nov; 248(2):167-70. PubMed ID: 5130449
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolism of glycine by rumen microorganisms.
    Wright DE; Hungate RE
    Appl Microbiol; 1967 Jan; 15(1):152-7. PubMed ID: 6067730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rumen microbial growth rates and yields: effect of amino acids and protein.
    Maeng WJ; Van Nevel CJ; Baldwin RL; Morris JG
    J Dairy Sci; 1976 Jan; 59(1):68-79. PubMed ID: 1249281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in metabolism and cell size of the anaerobic bacterium Selenomonas ruminantium 0078A at the onset of growth in continuous culture.
    Silley P; Armstrong DG
    J Appl Bacteriol; 1984 Jun; 56(3):487-92. PubMed ID: 6746466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, culture, and fermentation characteristics of Selenomonas ruminantium var. bryantivar. n. from the rumen of sheep.
    Prins RA
    J Bacteriol; 1971 Mar; 105(3):820-5. PubMed ID: 4323298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Isolation and in vitro metabolic characterization of a lactate-utilizing bacterium from goat rumen].
    Long L; Mao S; Su Y; Zhu W
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1571-7. PubMed ID: 19271530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic fate of cysteine and methionine in rumen digesta.
    Nader CJ; Walker DJ
    Appl Microbiol; 1970 Nov; 20(5):677-81. PubMed ID: 5485079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing rumen microbial growth rates and yields: effects of urea and amino acids over time.
    Maeng WJ; Baldwin RL
    J Dairy Sci; 1976 Apr; 59(4):643-7. PubMed ID: 1262578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desaturation and saturation of fatty acids by sheep rumen bacteria: optimal conditions and cofactor requirements.
    Sklan D; Budowski P
    J Dairy Sci; 1974 Jan; 57(1):56-60. PubMed ID: 4149299
    [No Abstract]   [Full Text] [Related]  

  • 14. Lipid synthesis by rumen microorganisms. II. Further characterization of the effects of methionine.
    Patton RA; McCarthy RD; Griel LC
    J Dairy Sci; 1970 Apr; 53(4):460-5. PubMed ID: 5433690
    [No Abstract]   [Full Text] [Related]  

  • 15. Detection of N6-methyladenine in GATC sequences of Selenomonas ruminantium.
    Pristas P; Molnarova V; Javorsky P
    J Basic Microbiol; 1998; 38(4):283-7. PubMed ID: 9791949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.
    Asanuma N; Yokoyama S; Hino T
    Anim Sci J; 2015 Apr; 86(4):378-84. PubMed ID: 25439583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical form of the diet in relation to rumen fermentation.
    Thomson DJ
    Proc Nutr Soc; 1972 Sep; 31(2):127-34. PubMed ID: 4563286
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification of products produced by the anaerobic degradation of rutin and related flavonoids by Butyrivibrio sp. C3.
    Krishnamurty HG; Cheng KJ; Jones GA; Simpson FJ; Watkin JE
    Can J Microbiol; 1970 Aug; 16(8):759-67. PubMed ID: 5530120
    [No Abstract]   [Full Text] [Related]  

  • 19. Fatty acid composition of Thermus aquaticus at different growth temperatures.
    Heinen W; Klein HP; Volkmann CM
    Arch Mikrobiol; 1970; 72(2):199-202. PubMed ID: 5469574
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose.
    Callaway ES; Martin SA
    J Dairy Sci; 1997 Sep; 80(9):2035-44. PubMed ID: 9313145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.