These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 5689804)

  • 1. The non-reactivity of 1,2-fluorenoquinone-2-acetimide with deoxyribonucleic acid and soluble ribonucleic acid.
    King CM; Phillips B
    Biochem Pharmacol; 1968 May; 17(5):833-5. PubMed ID: 5689804
    [No Abstract]   [Full Text] [Related]  

  • 2. Reaction of the glucuronide of the carcinogen N-hydroxy-2-acetylaminofluorene with nucleic acids.
    Irving CC; Veazey RA; Hill JT
    Biochim Biophys Acta; 1969 Mar; 179(1):189-98. PubMed ID: 5787643
    [No Abstract]   [Full Text] [Related]  

  • 3. Dynamic structure of DNA modified with the carcinogen N-acetoxy-n-2-acetylaminofluorene.
    Fuchs RP; Daune MP
    Biochemistry; 1974 Oct; 13(21):4435-40. PubMed ID: 4472072
    [No Abstract]   [Full Text] [Related]  

  • 4. Physical studies on deoxyribonucleic acid after covalent binding of a carcinogen.
    Fuchs R; Daune M
    Biochemistry; 1972 Jul; 11(14):2659-66. PubMed ID: 4537912
    [No Abstract]   [Full Text] [Related]  

  • 5. Tilorone hydrochloride--a specific probe for A-T regions of duplex deoxyribonucleic acid.
    Chandra P; Woltersdorf M
    Biochem Pharmacol; 1976 Apr; 25(8):877-80. PubMed ID: 57781
    [No Abstract]   [Full Text] [Related]  

  • 6. The differential reactivity of the oxidation products of o-aminophenols towards protein and nucleic acid.
    King CM; Kriek E
    Biochim Biophys Acta; 1965 Nov; 111(1):147-53. PubMed ID: 5893782
    [No Abstract]   [Full Text] [Related]  

  • 7. Modifications of ribonucleic acid by chemical carcinogens. I. In vitro modification of transfer ribonucleic acid by N-acetoxy-2-acetylaminofluorene.
    Fink LM; Nishimura S; Weinstein IB
    Biochemistry; 1970 Feb; 9(3):496-502. PubMed ID: 4906322
    [No Abstract]   [Full Text] [Related]  

  • 8. The interaction between small molecules and nucleic acids studied by circular dichroism.
    Kaneko M; Nagata C
    Chem Biol Interact; 1971 Nov; 3(6):459-68. PubMed ID: 5156949
    [No Abstract]   [Full Text] [Related]  

  • 9. Possible role of the glucuronide conjugate in the biochemical mechanism of binding of the carcinogen N-hydroxy-2-acetylaminofluorene to rat-liver deoxyribonucleic acid in vivo.
    Irving CC; Veazey RA; Russell LT
    Chem Biol Interact; 1969 Oct; 1(1):19-26. PubMed ID: 5407052
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies with the RNA polymerase. I. Factors affecting the binding of nucleic acid polymers to the enzyme.
    Anthony DD; Zeszotek E; Goldthwait DA
    Biochim Biophys Acta; 1969 Feb; 174(2):458-75. PubMed ID: 4887374
    [No Abstract]   [Full Text] [Related]  

  • 11. Circular dichroism properties of ethidium bromide-deoxyribonucleic acid complexes.
    Aktipis S; Martz WW
    Biochem Biophys Res Commun; 1970 May; 39(3):307-13. PubMed ID: 5463526
    [No Abstract]   [Full Text] [Related]  

  • 12. On the interaction of N-2-fluorenylhydroxylamine with nucleic acids in vitro.
    Kriek E
    Biochem Biophys Res Commun; 1965 Sep; 20(6):793-9. PubMed ID: 5861697
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of heating and cooling on interaction of lysine-rich histones with deoxyribonucleic acid.
    Cvetković MD; Savić RM
    Biochem J; 1969 May; 112(5):801-2. PubMed ID: 5387651
    [No Abstract]   [Full Text] [Related]  

  • 14. Reactions of glyoxal with nucleic acids. Nucleotides and their component bases.
    Nakaya K; Takenaka O; Horinishi H; Shibata K
    Biochim Biophys Acta; 1968 Jun; 161(1):23-31. PubMed ID: 5690799
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of divalent cations on the daunomycin-deoxyribonucleic acid complex.
    Fishman MM; Schwartz I
    Biochem Pharmacol; 1974 Aug; 23(15):2147-54. PubMed ID: 4472085
    [No Abstract]   [Full Text] [Related]  

  • 16. [Kinetic study of the structural transformation of deoxyribonucleic acid].
    Richard H; Pacault A
    Bull Soc Chim Biol (Paris); 1968 Apr; 50(2):417-26. PubMed ID: 5689860
    [No Abstract]   [Full Text] [Related]  

  • 17. On the denaturation of deoxyribonucleic acid. II. Effects of concentration.
    Lin HJ; Chargaff E
    Biochim Biophys Acta; 1967 Sep; 145(2):398-409. PubMed ID: 4965075
    [No Abstract]   [Full Text] [Related]  

  • 18. Streptococcal nucleases. 3. Kinetics of action and inhibition by transfer ribonucleic acid.
    Yasmineh WG; Gray ED; Wannamaker LW
    Biochemistry; 1968 Jan; 7(1):91-7. PubMed ID: 5758563
    [No Abstract]   [Full Text] [Related]  

  • 19. Specificity in the association of histones with deoxyribonucleic acid. Evidence from derivative thermal denaturation profiles.
    Ansevin AT; Brown BW
    Biochemistry; 1971 Mar; 10(7):1133-42. PubMed ID: 4928622
    [No Abstract]   [Full Text] [Related]  

  • 20. Conformational changes associated with f-1 histone-deoxyribonucleic acid complexes. Circular dichroism studies.
    Fasman GD; Schaffhausen B; Goldsmith L; Adler A
    Biochemistry; 1970 Jul; 9(14):2814-22. PubMed ID: 5459534
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.