These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 5689847)

  • 1. The structural properties of trypsinogen and trypsin. Alkylation and oxidation of methionines.
    Holeysovsky V; Lazdunski M
    Biochim Biophys Acta; 1968 Apr; 154(3):457-67. PubMed ID: 5689847
    [No Abstract]   [Full Text] [Related]  

  • 2. Trypsin-pancreatic trypsin inhibitor association. Dynamics of the interaction and role of disulfide bridges.
    Vincent JP; Lazdunski M
    Biochemistry; 1972 Aug; 11(16):2967-77. PubMed ID: 5041905
    [No Abstract]   [Full Text] [Related]  

  • 3. Activation of selectively reduced and alkylated trypsinogen and enzymic properties of the activated product.
    Hatfield LM; Banerjee SK; Light A
    J Biol Chem; 1971 Oct; 246(20):6303-12. PubMed ID: 4942560
    [No Abstract]   [Full Text] [Related]  

  • 4. Trypsinogen, trypsin, trypsin-substrate and trypsin-inhibitor complexes in urea solutions.
    Delaage M; Lazdunski M
    Eur J Biochem; 1968 Apr; 4(3):378-84. PubMed ID: 5690131
    [No Abstract]   [Full Text] [Related]  

  • 5. Refolding of reduced, denatured trypsinogen and trypsin immobilized on Agarose beads.
    Sinha NK; Light A
    J Biol Chem; 1975 Nov; 250(22):8624-9. PubMed ID: 241750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of a single disulfide bond in trypsinogen and the activation of the carboxymethyl derivative.
    Light A; Hardwick BC; Hatfield LM; Sondack DL
    J Biol Chem; 1969 Nov; 244(22):6289-96. PubMed ID: 5350962
    [No Abstract]   [Full Text] [Related]  

  • 7. On the structural and functional role of carboxylates in chymotrypsinogen A: a comparison with chymotrypsin, trypsinogen and trypsin.
    Abita JP; Lazdunski M
    Biochem Biophys Res Commun; 1969 Jun; 35(5):707-12. PubMed ID: 5794088
    [No Abstract]   [Full Text] [Related]  

  • 8. [Structural study of trypsinogen and trypsin. State diagrams].
    Lazdunski M; Delaage M
    Biochim Biophys Acta; 1967 Aug; 140(3):417-34. PubMed ID: 6050448
    [No Abstract]   [Full Text] [Related]  

  • 9. Metal-induced stabilization of trypsin modified with alpha-oxoglutaric acid.
    Villalonga ML; Reyes G; Villalonga R
    Biotechnol Lett; 2004 Feb; 26(3):209-12. PubMed ID: 15049364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine Alkylation as an Approach to Quantify Methionine Oxidation Using Mass Spectrometry.
    Hoare M; Tan R; Welle KA; Swovick K; Hryhorenko JR; Ghaemmaghami S
    J Am Soc Mass Spectrom; 2024 Mar; 35(3):433-440. PubMed ID: 38324783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relation of the -amino group of trypsin to enzyme function and zymogen activation.
    Robinson NC; Neurath H; Walsh KA
    Biochemistry; 1973 Jan; 12(3):420-6. PubMed ID: 4683488
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure studies of bovine liver thiosulfate sulfurtransferase. II. S-carboxymethylation of the enzyme and sequence analysis of the tryptic cysteinyl peptides.
    Blumenthal KM; Heinrikson RL
    Biochim Biophys Acta; 1972 Oct; 278(3):530-45. PubMed ID: 5085671
    [No Abstract]   [Full Text] [Related]  

  • 13. Detection of a local interaction of hen lysozyme under highly denaturing conditions using chemically 13C-enriched methionine resonance.
    Abe Y; Ueda T; Kawano K; Tanaka Y; Imoto T
    J Biochem; 1998 Feb; 123(2):313-7. PubMed ID: 9538208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkylation of serine at the active site of trypsin.
    Lawson WB; Leafer MD; Tewes A; Rao GJ
    Hoppe Seylers Z Physiol Chem; 1968 Feb; 349(2):251-62. PubMed ID: 5677011
    [No Abstract]   [Full Text] [Related]  

  • 15. Ligand-induced changes in the conformational stability of bovine trypsinogen and their implications for the protein function.
    Bulaj G; Otlewski J
    J Mol Biol; 1995 Apr; 247(4):701-16. PubMed ID: 7723025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of bovine trypsin by reductive methylation.
    Rice RH; Means GE; Brown WD
    Biochim Biophys Acta; 1977 Jun; 492(2):316-21. PubMed ID: 560214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of 14,38-bis-[S-carbamidomethyl]-(basic trypsin inhibitor) possessing full biological activity.
    Liu WK; Meienhofer J
    Biochem Biophys Res Commun; 1968 May; 31(3):467-73. PubMed ID: 5690125
    [No Abstract]   [Full Text] [Related]  

  • 18. [Study of the residues on the terminal nitrogen atoms of bovine trypsinogen and trypsin].
    ROVERY M; FABRE C; DESNUELLE P
    Biochim Biophys Acta; 1952 Dec; 9(6):702. PubMed ID: 13032184
    [No Abstract]   [Full Text] [Related]  

  • 19. Oxidation of methionine residues in recombinant human interleukin-1 receptor antagonist: implications of conformational stability on protein oxidation kinetics.
    Thirumangalathu R; Krishnan S; Bondarenko P; Speed-Ricci M; Randolph TW; Carpenter JF; Brems DN
    Biochemistry; 2007 May; 46(21):6213-24. PubMed ID: 17480058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of bovine trypsinogen at 1-8 A resolution. II. Crystallographic refinement, refined crystal structure and comparison with bovine trypsin.
    Fehlhammer H; Bode W; Huber R
    J Mol Biol; 1977 Apr; 111(4):415-38. PubMed ID: 864704
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.