These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 5691978)

  • 1. Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation.
    Ishikawa H
    J Cell Biol; 1968 Jul; 38(1):51-66. PubMed ID: 5691978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional structure of intracellular membranous organelles in embryonic chick skeletal muscle cells in vitro revealed with scanning electron microscope.
    Shiozaki M; Shimada Y
    J Electron Microsc (Tokyo); 1990; 39(1):18-25. PubMed ID: 2358768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network and lamellar structures in the tail muscle fibers of the metamorphosing anuran tadpole.
    Sasaki F; Horiguchi T; Takahama H; Watanabe K
    Anat Rec; 1985 Apr; 211(4):369-75. PubMed ID: 3993985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. Are caveolae the mouths of the transverse tubule system?
    Zampighi G; Vergara J; Ramón F
    J Cell Biol; 1975 Mar; 64(3):734-40. PubMed ID: 1080153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenesis of transverse tubules: immunocytochemical localization of a transverse tubular protein (TS28) and a sarcolemmal protein (SL50) in rabbit skeletal muscle developing in situ.
    Yuan S; Arnold W; Jorgensen AO
    J Cell Biol; 1990 Apr; 110(4):1187-98. PubMed ID: 2139033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro.
    Ezerman EB; Ishikawa H
    J Cell Biol; 1967 Nov; 35(2):405-20. PubMed ID: 19866710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-system formation in cultured rat skeletal tissue.
    Schiaffino S; Cantini M; Sartore S
    Tissue Cell; 1977; 9(3):437-46. PubMed ID: 929575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) in rabbit skeletal muscle.
    Jorgensen AO; Arnold W; Shen AC; Yuan SH; Gaver M; Campbell KP
    J Cell Biol; 1990 Apr; 110(4):1173-85. PubMed ID: 2157716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proliferation of the surface-connected intracytoplasmic membranous network in skeletal muscle disease.
    Malouf NN; Wilson PE
    Am J Pathol; 1986 Nov; 125(2):358-68. PubMed ID: 3789091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze fracture of skeletal muscle from the Tarantula spider. Structural differentiations of sarcoplasmic reticulum and transverse tubular system membranes.
    Franzini-Armstron C
    J Cell Biol; 1974 May; 61(2):501-13. PubMed ID: 4827910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional structure of tubular networks, presumably Golgi in nature, in various yeast strains: a comparative study.
    Rambourg A; Clermont Y; Ovtracht L; Képès F
    Anat Rec; 1995 Nov; 243(3):283-93. PubMed ID: 8579247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clusters of intramembrane particles associated with binding sites for alpha-bungarotoxin in cultured chick myotubes.
    Cohen SA; Pumplin DW
    J Cell Biol; 1979 Aug; 82(2):494-516. PubMed ID: 479313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle.
    Muñoz P; Rosemblatt M; Testar X; Palacín M; Zorzano A
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):273-80. PubMed ID: 7536412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of transverse tubules in insulin stimulated muscle glucose transport.
    Dohm GL; Dolan PL; Frisell WR; Dudek RW
    J Cell Biochem; 1993 May; 52(1):1-7. PubMed ID: 8320268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myogenesis in vitro as seen with the scanning electron microscope.
    Shimada Y; Komiyama M; Shiozaki M; Isobe Y; Masuko S
    Scanning Microsc; 1987 Sep; 1(3):1377-86. PubMed ID: 3659869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous ion diffusion within skeletal muscle transverse tubule networks.
    Shorten PR; Soboleva TK
    Theor Biol Med Model; 2007 May; 4():18. PubMed ID: 17509153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary culture of chick embryo skeletal muscle on dextran microcarrier.
    Pawlowski R; Szigeti V; Loyd R; Przybylski RJ
    Eur J Cell Biol; 1984 Nov; 35(2):296-303. PubMed ID: 6083864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenesis of transverse tubules in skeletal muscle in vitro.
    Flucher BE; Terasaki M; Chin HM; Beeler TJ; Daniels MP
    Dev Biol; 1991 May; 145(1):77-90. PubMed ID: 2019326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils.
    Flucher BE; Takekura H; Franzini-Armstrong C
    Dev Biol; 1993 Nov; 160(1):135-47. PubMed ID: 8224530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of sarcolemma-associated antigens with differential distributions on fast and slow skeletal muscle fibers.
    Schafer DA; Stockdale FE
    J Cell Biol; 1987 Apr; 104(4):967-79. PubMed ID: 3549741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.