These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 5698540)

  • 1. In-vivo CO2 dissociation curves of mixed venous and arterial blood in anaesthetized man.
    Prys-Roberts C
    Br J Anaesth; 1968 Oct; 40(10):802. PubMed ID: 5698540
    [No Abstract]   [Full Text] [Related]  

  • 2. [On the parallelism of changes in acid-base equilibrium in arterial and venous blood in some surgical patients during surgery under general anesthesia with controlled respiration].
    Kabakov AI; Rastrigin NN
    Lab Delo; 1969; 2():70-1. PubMed ID: 4184894
    [No Abstract]   [Full Text] [Related]  

  • 3. [Arterial blood-gas in Wistar rats during barbiturate and halothane long term anesthesia in normothermia].
    Kaczmarczyk G; Goepel M; Reinhardt HW
    Pflugers Arch; 1972; 332():Suppl 332:R8. PubMed ID: 5066058
    [No Abstract]   [Full Text] [Related]  

  • 4. A comparison of the in-vivo CO 2 titration curves of arterial and mixed-venous blood in dogs.
    Norman J
    Br J Anaesth; 1972 Aug; 44(8):903. PubMed ID: 4404291
    [No Abstract]   [Full Text] [Related]  

  • 5. Variation of alveolar-to-arterial oxygen tension difference with changes of Pa,CO2 in anaesthetized man.
    Kelman GR; Prys-Roberts C
    J Physiol; 1968 Jan; 194(1):13P-14P. PubMed ID: 5639762
    [No Abstract]   [Full Text] [Related]  

  • 6. End-tidal partial pressure of CO2 as an estimate of arterial partial pressure of CO2 during various ventilatory regimens in halothane-anesthetized dogs.
    Hightower CE; Kiorpes AL; Butler HC; Fedde MR
    Am J Vet Res; 1980 Apr; 41(4):610-2. PubMed ID: 6773449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of a single-breath method for determining carbon dioxide tensions in mixed venous and arterial blood in the dog [proceedings].
    Hainsworth R; Mohammed M
    J Physiol; 1979 May; 290(2):52P-53P. PubMed ID: 469797
    [No Abstract]   [Full Text] [Related]  

  • 8. Correlation of peripheral venous and arterial blood gas values during general anesthesia.
    Williamson DC; Munson ES
    Anesth Analg; 1982 Nov; 61(11):950-2. PubMed ID: 6814299
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of ventilation on acid-base balance and oxygenation in low blood-flow states.
    Idris AH; Staples ED; O'Brien DJ; Melker RJ; Rush WJ; Del Duca KD; Falk JL
    Crit Care Med; 1994 Nov; 22(11):1827-34. PubMed ID: 7956288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods of elevation of PCO2 after anaesthesia with passive hyperventilation.
    Ivanov SD; Nunn JF
    Br J Anaesth; 1968 Oct; 40(10):804. PubMed ID: 5698543
    [No Abstract]   [Full Text] [Related]  

  • 11. [Relations between the arterio-alveolar CO2-difference and the blood pressure in the pulmonary artery during fluothane anesthesia].
    Askrog V
    Anaesthesist; 1966 Jul; 15(7):213-8. PubMed ID: 5996298
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of passive hyperventilation during halothane anaesthesia on the ventilatory response to carbon dioxide.
    Potter DR; Paddle JS
    Br J Anaesth; 1969 Feb; 41(2):191-2. PubMed ID: 5774523
    [No Abstract]   [Full Text] [Related]  

  • 13. Cardiopulmonary effects of halothane in hypovolemic dogs.
    Pascoe PJ; Haskins SC; Ilkiw JE; Patz JD
    Am J Vet Res; 1994 Jan; 55(1):121-6. PubMed ID: 8141484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The in-vitro and in-vivo carbon dioxide dissociation curves of true plasma. A theoretical analysis.
    Roos A; Thomas LJ
    Anesthesiology; 1967; 28(6):1048-63. PubMed ID: 6058067
    [No Abstract]   [Full Text] [Related]  

  • 15. Reversal of apnea following artificial ventilation under anesthesia.
    Allen GD; Ward RJ; Green HD; Perrin EB
    Anesth Analg; 1967; 46(6):690-7. PubMed ID: 6070160
    [No Abstract]   [Full Text] [Related]  

  • 16. The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood.
    McHardy GJ
    Clin Sci; 1967 Apr; 32(2):299-309. PubMed ID: 6022823
    [No Abstract]   [Full Text] [Related]  

  • 17. Prediction of arterial carbon dioxide tension using a circle system without carbon dioxide absorption.
    Scholfield EJ; Williams NE
    Br J Anaesth; 1974 Jun; 46(6):442-5. PubMed ID: 4533243
    [No Abstract]   [Full Text] [Related]  

  • 18. [Effect of ketamine hydrochloride-halothane-oxygen anesthesia on respiration, blood gases and acid-base status of the rabbit].
    Bonath K; Hirche H; Lange S
    Berl Munch Tierarztl Wochenschr; 1980 Dec; 93(23):462-8. PubMed ID: 6781468
    [No Abstract]   [Full Text] [Related]  

  • 19. The central venous catheter in the assay of acid base status.
    Steinberg JJ; Harken AH
    Surg Gynecol Obstet; 1981 Feb; 152(2):221-2. PubMed ID: 6782688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of independent changes in mixed-venous PCO2 or PO2 on cardiac output in anesthetized sheep.
    Shanley CJ; Shah NL; Overbeck MC; Kulkarni NB; Bartlett RH
    J Surg Res; 1997 Aug; 71(2):107-16. PubMed ID: 9299277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.