These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 5701704)

  • 1. Stereochemical studies on cyclic peptides. 3. Conformational analysis of cyclotetrapeptides.
    Ramakrishnan C; Sarathy KP
    Biochim Biophys Acta; 1968 Dec; 168(3):402-10. PubMed ID: 5701704
    [No Abstract]   [Full Text] [Related]  

  • 2. Stereochemical studies on cyclic peptides. IV. Conformational analysis of cyclopentapeptides.
    Ramakrishnan C; Sarathy KP
    Int J Protein Res; 1969; 1(1):63-71. PubMed ID: 5406490
    [No Abstract]   [Full Text] [Related]  

  • 3. Stereochemical studies on cyclic peptides. V. Conformational analysis of cyclohexapeptides.
    Ramakrishnan C; Sarathy KP
    Int J Protein Res; 1969; 1(2):103-11. PubMed ID: 5406481
    [No Abstract]   [Full Text] [Related]  

  • 4. Subtilisin; a stereochemical mechanism involving transition-state stabilization.
    Robertus JD; Kraut J; Alden RA; Birktoft JJ
    Biochemistry; 1972 Nov; 11(23):4293-303. PubMed ID: 5079900
    [No Abstract]   [Full Text] [Related]  

  • 5. Stereochemical criteria for polypeptides and proteins. VI. Non-bonded energy of polyglycine and poly-L-alanine in the crystalline beta-form.
    Venkatachalam CM
    Biochim Biophys Acta; 1968 Dec; 168(3):411-6. PubMed ID: 5701705
    [No Abstract]   [Full Text] [Related]  

  • 6. Conformations of cyclic and cylindrical peptides.
    Hassall CH; Thomas WA
    Chem Br; 1971 Apr; 7(4):145-53. PubMed ID: 4931169
    [No Abstract]   [Full Text] [Related]  

  • 7. Stereochemical studies on cyclic peptides. VII. Effect of different types of energies on the hydrogen-bonded conformations of cyclic hexapeptides.
    Sarathy KP; Ramakrishnan C
    Int J Protein Res; 1972; 4(1):1-9. PubMed ID: 5016601
    [No Abstract]   [Full Text] [Related]  

  • 8. Theoretical structure of the polar regions of the tropocollagen molecule.
    Hopfinger AJ; Walton AG
    Biopolymers; 1970; 9(4):433-44. PubMed ID: 5436170
    [No Abstract]   [Full Text] [Related]  

  • 9. Stereochemical analysis of the secondary structure of polypeptide chains with the aid of Courtauld three-dimensional models. II. Hydrogen and hydrophobic bonds.
    Finkel'shtein AV
    Mol Biol (Mosk); 1976; 10(4):724-30. PubMed ID: 1023051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of angles of internal rotation and the thermodynamic characteristics of the -helix.
    Skvortsov AM; Birshtein TM; Aleksanyan VI
    Mol Biol; 1972; 6(4):394-9. PubMed ID: 4659305
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure of the cell wall of Staphylococcus aureaus. IX. Mechanism of hydrolysis by the L11 enzyme.
    Kato K; Strominger JL
    Biochemistry; 1968 Aug; 7(8):2745-61. PubMed ID: 5666749
    [No Abstract]   [Full Text] [Related]  

  • 12. Polymers of tripeptides as collagen models. 3. Structural relationship between two forms of poly(L-prolyl-L-alanyl-glycine).
    Traub W; Yonath A
    J Mol Biol; 1967 Apr; 25(2):351-5. PubMed ID: 6034104
    [No Abstract]   [Full Text] [Related]  

  • 13. Conformation of polypeptide chains.
    Venkatachalam CM; Ramachandran GN
    Annu Rev Biochem; 1969; 38():45-82. PubMed ID: 4896243
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy parameters in polypeptides. IV. Semiempirical molecular orbital calculations of conformational dependence of energy and partial charge in di- and tripeptides.
    Momany FA; McGuire RF; Yan JF; Scheraga HA
    J Phys Chem; 1971 Jul; 75(15):2286-97. PubMed ID: 5091273
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetic studies on the alkaline decomposition of cystine derivatives and peptides.
    Gawron O; Odstrchel G
    J Am Chem Soc; 1967 Jun; 89(13):3263-7. PubMed ID: 6042762
    [No Abstract]   [Full Text] [Related]  

  • 16. Vibrational analysis of peptides, polypeptides, and proteins. II. beta-poly(L-alanine) and beta-poly(L-anaylglycine).
    Moore WH; Krimm S
    Biopolymers; 1976 Dec; 15(12NA-NA-770103-770104):2465-83. PubMed ID: 1000052
    [No Abstract]   [Full Text] [Related]  

  • 17. Apparent molal volume of glycine, glycolamide, alanine, lactamide, and glycylglycine in aqueous solution at 25 degrees and high pressures.
    Yayanos AA
    J Phys Chem; 1972 Jun; 76(12):1783-92. PubMed ID: 5034880
    [No Abstract]   [Full Text] [Related]  

  • 18. 254. The solution conformation of cyclo-glycyl-L-prolyl-glycyl-glycyl-L-prolyl-glycyl. Communication 22 (preliminary) on homodetic cyclic polypeptides.
    Schwyzer R; Grathwohl C; Meraldi JP; Tun-Kyi A; Vogel R; Wüthrich K
    Helv Chim Acta; 1972; 55(7):2545-9. PubMed ID: 4637276
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of replacement of L-alanine residue by glycine, L-serine or D-alanine in an N-acetylmuramyl-L-alanyl-D-isoglutamine on immunoadjuvancies of molecules.
    Kotani S; Watanabe Y; Kinoshita F; Morisaki I; Kato K
    Biken J; 1977 Jun; 20(2):39-45. PubMed ID: 588232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Block sequential polypeptides of L-alanine and glycine with D, L-glutamic acid.
    Iio T
    Biopolymers; 1971; 10(9):1583-96. PubMed ID: 5126128
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.