These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 5707287)

  • 1. [On the differentiation of the neural tube, specially of the stratum zonale. Electron microscopical studies on chicks].
    Bergquist H
    Z Zellforsch Mikrosk Anat; 1968; 86(3):401-21. PubMed ID: 5707287
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of early neurons in the brainstem and spinal cord: I. An autoradiographic study in the chick.
    McConnell JA; Sechrist JW
    J Comp Neurol; 1980 Aug; 192(4):769-83. PubMed ID: 7419754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Several aspects of migration of neural cells in chick embryo studied by the method of heterospecific grafts of the neural tube].
    Le Douarin N; Teillet MA
    C R Seances Soc Biol Fil; 1970 Sep; 164(2):390-7. PubMed ID: 4249136
    [No Abstract]   [Full Text] [Related]  

  • 4. [Electron microscopic contribution on the differentiation of the ependyma of the spinal cord in chicken embryos].
    Wechsler W
    Z Zellforsch Mikrosk Anat; 1966; 74(3):423-42. PubMed ID: 5986588
    [No Abstract]   [Full Text] [Related]  

  • 5. [Neural induction in birds across a millipore filter: optic and electron microscope study].
    Gallera J; Nicolet G; Baumann M
    J Embryol Exp Morphol; 1968 May; 19(3):439-50. PubMed ID: 5667413
    [No Abstract]   [Full Text] [Related]  

  • 6. [Electron microscopic contribution on nerve cell differentiation and histogenesis of the gray substance of the spinal cord of chick embryos].
    Wechsler W
    Z Zellforsch Mikrosk Anat; 1966; 74(3):401-22. PubMed ID: 5986587
    [No Abstract]   [Full Text] [Related]  

  • 7. [Determination of the level of the origin of the adrenal medulla cells in the neural axis using heterospecific grafts of quail neural rudiments on chick embryos].
    Teillet MA; Le Douarin N
    Arch Anat Microsc Morphol Exp; 1974 Jan; 63(1):51-62. PubMed ID: 4844043
    [No Abstract]   [Full Text] [Related]  

  • 8. Proliferation and differentiation in the neural tube of the chick following limb bud or somite removal.
    Lee S; Martin AH
    Acta Embryol Exp (Palermo); 1971; 3():211-24. PubMed ID: 5164839
    [No Abstract]   [Full Text] [Related]  

  • 9. Expression pattern of BM88 in the developing nervous system of the chick and mouse embryo.
    Politis PK; Rohrer H; Matsas R
    Gene Expr Patterns; 2007 Jan; 7(1-2):165-77. PubMed ID: 16949349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of tritiated uridine into the primitive neural tube of chicken embryo.
    Ojeda Sahagun JL; Lopez Lara F; Gomez Bosque P
    Acta Anat (Basel); 1973; 86(3):532-9. PubMed ID: 4785690
    [No Abstract]   [Full Text] [Related]  

  • 11. Ultrastructure of secondary neurulation in the chick embryo.
    Schoenwolf GC; Delongo J
    Am J Anat; 1980 May; 158(1):43-63. PubMed ID: 7416046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of the theories of vertebrate neurulation and their relationship to the mechanics of neural tube birth defects.
    Gordon R
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():229-55. PubMed ID: 3913733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of spontaneous bioelectric activities and strychnine sensitivity during maturation in culture of embryonic chick and rodent central nervous tissues.
    Corner MA; Crain SM
    Arch Int Pharmacodyn Ther; 1969 Dec; 182(2):404-6. PubMed ID: 5371194
    [No Abstract]   [Full Text] [Related]  

  • 14. Histological features of neural induction in Xenopus laevis.
    Tarin D
    J Embryol Exp Morphol; 1971 Dec; 26(3):543-70. PubMed ID: 5146319
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterization of intercellular junctions in the caudal portion of the developing neural tube of the chick embryo.
    Schoenwolf GC; Kelley RO
    Am J Anat; 1980 May; 158(1):29-41. PubMed ID: 7416045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific regulation of cyclins D1 and D2 by FGF and Shh signaling coordinates cell cycle progression, patterning, and differentiation during early steps of spinal cord development.
    Lobjois V; Benazeraf B; Bertrand N; Medevielle F; Pituello F
    Dev Biol; 2004 Sep; 273(2):195-209. PubMed ID: 15328007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of synapses and myelin in cultures of dissociated embryonic mouse spinal cord, medulla and cerebrum.
    Bornshein MB; Model PG
    Brain Res; 1972 Feb; 37(2):287-93. PubMed ID: 5061116
    [No Abstract]   [Full Text] [Related]  

  • 18. Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog.
    Pringle NP; Yu WP; Guthrie S; Roelink H; Lumsden A; Peterson AC; Richardson WD
    Dev Biol; 1996 Jul; 177(1):30-42. PubMed ID: 8660874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of the neural canal in young blastoderms of chick embryos (Gallus domesticus). An optic and electron microscopic study.
    Franquesa Llopart E; Domenech Mateu JM
    Folia Morphol (Praha); 1981; 29(1):18-21. PubMed ID: 7227880
    [No Abstract]   [Full Text] [Related]  

  • 20. Early neurogenesis in Amniote vertebrates.
    Le Douarin NM
    Int J Dev Biol; 2001; 45(1):373-8. PubMed ID: 11291868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.