These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 571181)
1. Production of protein by fungi from agricultural wastes. III. Effect of phosphorus on the efficiency of substrate utilization and protein production by Rhizoctonia melongina, Pleurotus ostreatus, and Coprinus aratus. Jauhri KS; Sen A Zentralbl Bakteriol Naturwiss; 1978; 133(7-8):604-8. PubMed ID: 571181 [TBL] [Abstract][Full Text] [Related]
2. Production of protein by fungi from agricultural wastes. II. Effect of carbon/nitrogen ratio on the efficiency of substrate utilization and protein production by Rhizoctonia melongina, Pleurotus ostreatus, and Coprinus aratus. Jauhri KS; Sen A Zentralbl Bakteriol Naturwiss; 1978; 133(7-8):597-603. PubMed ID: 571180 [TBL] [Abstract][Full Text] [Related]
3. Production of protein by fungi from agricultural wastes. IV. Effect of certain inorganic salts on the efficiency of substrate utilization and protein production by Rhizoctonia melongina, Pleurotus ostreatus, and Coprinus aratus. Jauhri KS; Sen A Zentralbl Bakteriol Naturwiss; 1978; 133(7-8):609-13. PubMed ID: 571182 [TBL] [Abstract][Full Text] [Related]
4. Production of protein by fungi from agricultural wastes. V. Effect of various organic acids and growth promoters on the efficiency of substrate utilization and protein production by Rhizoctonia melongina, Pleurotus ostreatus, and Coprinus aratus. Jauhri KS; Sen A Zentralbl Bakteriol Naturwiss; 1978; 133(7-8):614-8. PubMed ID: 571183 [TBL] [Abstract][Full Text] [Related]
5. Production of protein by fungi from agricultural wastes. VI. Quality of the protein formed in Rhizoctonia melongina, Pleurotus ostreatus, and Coprinus aratus. Jauhri KS Zentralbl Bakteriol Naturwiss; 1978; 133(7-8):619-22. PubMed ID: 571184 [TBL] [Abstract][Full Text] [Related]
6. Production of protein by fungi from agricultural wastes. I. Standardization of certain factors for maximum protein production. Jauhri KS; Kumari ML; Sen A Zentralbl Bakteriol Naturwiss; 1978; 133(7-8):588-96. PubMed ID: 34947 [TBL] [Abstract][Full Text] [Related]
7. Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajor-caju) cultivated on different agricultural wastes. Kurt S; Buyukalaca S Bioresour Technol; 2010 May; 101(9):3164-9. PubMed ID: 20056410 [TBL] [Abstract][Full Text] [Related]
8. Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: Biochemical aspects and preparation of mushroom inoculum. Sainos E; Díaz-Godínez G; Loera O; Montiel-González AM; Sánchez C Appl Microbiol Biotechnol; 2006 Oct; 72(4):812-5. PubMed ID: 16586105 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of holocellulase production by plant-degrading fungi grown on agro-industrial residues. de Siqueira FG; de Siqueira AG; de Siqueira EG; Carvalho MA; Peretti BM; Jaramillo PM; Teixeira RS; Dias ES; Félix CR; Filho EX Biodegradation; 2010 Sep; 21(5):815-24. PubMed ID: 20221846 [TBL] [Abstract][Full Text] [Related]
10. Changes in metabolic activities of Fusarium oxysporum f. fabae and Rhizoctonia solani in response to Dithan A-40 fungicide. Zaki MM; Mahmoud SA; Hamed AS; Sahab AF Zentralbl Bakteriol Naturwiss; 1979; 134(8):660-5. PubMed ID: 543918 [TBL] [Abstract][Full Text] [Related]
11. Decolourisation of mushroom farm wastewater by Pleurotus ostreatus. Rodríguez Pérez S; García Oduardo N; Bermúdez Savón RC; Fernández Boizán M; Augur C Biodegradation; 2008 Jul; 19(4):519-26. PubMed ID: 17957486 [TBL] [Abstract][Full Text] [Related]
12. Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Membrillo I; Sánchez C; Meneses M; Favela E; Loera O Bioresour Technol; 2008 Nov; 99(16):7842-7. PubMed ID: 18359224 [TBL] [Abstract][Full Text] [Related]
13. Studies on the decomposition of lignosulfonates by the fungi Pleurotus ostreatus and Trametes pubescens. Wojtaś-Wasilewska M; Trojanowski J Acta Microbiol Pol B; 1975; 7(2):77-90. PubMed ID: 1172650 [TBL] [Abstract][Full Text] [Related]
14. [Cultivation of the yeast Mycoderma vini on an ethanol-containing medium and evaluation of the nutritive value of isolated yeast proteins]. Kharat'ian SG; Kaliuzhnyĭ MIa; Petrushko GM; Belikov VM; Volnova AI Prikl Biokhim Mikrobiol; 1975; 11(1):35-8. PubMed ID: 1168903 [TBL] [Abstract][Full Text] [Related]
15. [Autolysis in fungi. I. Autolysis of Coprinus and in fungal cultures]. Riemay KH; Tröger R Z Allg Mikrobiol; 1978; 18(7):523-40. PubMed ID: 32667 [No Abstract] [Full Text] [Related]
16. Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Tuyen DV; Phuong HN; Cone JW; Baars JJ; Sonnenberg AS; Hendriks WH Bioresour Technol; 2013 Feb; 129():256-63. PubMed ID: 23261998 [TBL] [Abstract][Full Text] [Related]
17. Degradative Ability of Mushrooms Cultivated on Corn Silage Digestate. Fornito S; Puliga F; Leonardi P; Di Foggia M; Zambonelli A; Francioso O Molecules; 2020 Jul; 25(13):. PubMed ID: 32630357 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Nishanth D; Biswas DR Bioresour Technol; 2008 Jun; 99(9):3342-53. PubMed ID: 17905580 [TBL] [Abstract][Full Text] [Related]
19. Optimization of extracellular fungal peroxidase production by 2 Coprinus species. Ikehata K; Pickard MA; Buchanan ID; Smith DW Can J Microbiol; 2004 Dec; 50(12):1033-40. PubMed ID: 15714234 [TBL] [Abstract][Full Text] [Related]
20. Use of maize wastewater for the cultivation of the Pleurotus spp. mushroom and optimization of its biological efficiency. Loss E; Royer AR; Barreto-Rodrigues M; Barana AC J Hazard Mater; 2009 Jul; 166(2-3):1522-5. PubMed ID: 19111988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]