These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 5714650)

  • 1. Cerebral blood flow control by arterial and not by tissue pCO2 as evidenced from CBF changes after step hypocapnia.
    Severinghaus JW; Lassen NA
    Scand J Clin Lab Invest Suppl; 1968; 102():VII:B. PubMed ID: 5714650
    [No Abstract]   [Full Text] [Related]  

  • 2. Step hypocapnia to separate arterial from tissue PCO2 in the regulation of cerebral blood flow.
    Severinghaus JW; Lassen N
    Circ Res; 1967 Feb; 20(2):272-8. PubMed ID: 6016780
    [No Abstract]   [Full Text] [Related]  

  • 3. The ratio between arterio-venous PCO2 difference and arterio-jugular oxygen difference as estimator of critical cerebral hypoperfusion.
    Zanier ER; Rossi S; Conte V; Colombo A; Nicolini R; Caironi P; Stocchetti N; Gattinoni L
    Minerva Anestesiol; 2006 Jun; 72(6):543-9. PubMed ID: 16682928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral venous outflow during graded hemorrhage.
    Rittmann WW; Smith LL
    Eur Surg Res; 1969; 1(4):264-74. PubMed ID: 5406441
    [No Abstract]   [Full Text] [Related]  

  • 5. Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2.
    Ainslie PN; Celi L; McGrattan K; Peebles K; Ogoh S
    Brain Res; 2008 Sep; 1230():115-24. PubMed ID: 18680730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral venous and tissue gases and arteriovenous shunting in the dog.
    Edelman G; Hoffman WE
    Anesth Analg; 1999 Sep; 89(3):679-83. PubMed ID: 10475305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cerebral arteriovenous vasoactive exchange during alterations in arterial blood gases.
    Peebles KC; Richards AM; Celi L; McGrattan K; Murrell CJ; Ainslie PN
    J Appl Physiol (1985); 2008 Oct; 105(4):1060-8. PubMed ID: 18617625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude.
    Willie CK; MacLeod DB; Smith KJ; Lewis NC; Foster GE; Ikeda K; Hoiland RL; Ainslie PN
    J Cereb Blood Flow Metab; 2015 May; 35(5):873-81. PubMed ID: 25690474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of changes in arterial PCO2 on cerebral blood flow and cerebral energy state during hypothermia in the rat.
    Hägerdal M; Harp JR; Siesjö BK
    Acta Anaesthesiol Scand Suppl; 1975; 57():25-33. PubMed ID: 1961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypocapnia PCO2 gradients between CSF and cerebral capillary blood.
    Pelligrino DA; Dempsey JA
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Sep; 43(3):480-6. PubMed ID: 21153
    [No Abstract]   [Full Text] [Related]  

  • 11. The effects of thalamonal on cerebral circulation and oxygen consumption in man.
    Sari A; Okuda Y; Takeshita H
    Br J Anaesth; 1972 Apr; 44(4):330-4. PubMed ID: 5032072
    [No Abstract]   [Full Text] [Related]  

  • 12. Human cerebrovascular and ventilatory CO2 reactivity to end-tidal, arterial and internal jugular vein PCO2.
    Peebles K; Celi L; McGrattan K; Murrell C; Thomas K; Ainslie PN
    J Physiol; 2007 Oct; 584(Pt 1):347-57. PubMed ID: 17690148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography.
    Ito H; Kanno I; Ibaraki M; Hatazawa J; Miura S
    J Cereb Blood Flow Metab; 2003 Jun; 23(6):665-70. PubMed ID: 12796714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of arterial carbon dioxide tension on the cerebrovascular response to arterial hypoxia and to haemodilution.
    Häggendal E; Winsö I
    Acta Anaesthesiol Scand; 1975; 19(2):134-45. PubMed ID: 237396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of cerebral vascular smooth muscle during general anaesthesia.
    McDowall DG; Okuda Y; Heuser D; Keaney NP
    Ciba Found Symp; 1978 Mar; (56):257-73. PubMed ID: 27339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human cerebrovascular response to oxygen and carbon dioxide as determined by internal carotid artery duplex scanning.
    Fortune JB; Bock D; Kupinski AM; Stratton HH; Shah DM; Feustel PJ
    J Trauma; 1992 May; 32(5):618-27; discussion 627-8. PubMed ID: 1588651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between baseline cerebral blood flow and vascular responses to changes in PaCO2 measured by positron emission tomography in humans: implication of inter-individual variations of cerebral vascular tone.
    Ito H; Kanno I; Ibaraki M; Suhara T; Miura S
    Acta Physiol (Oxf); 2008 Aug; 193(4):325-30. PubMed ID: 18298636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral blood flow and metabolism during and after prolonged hypercapnia in newborn lambs.
    Hino JK; Short BL; Rais-Bahrami K; Seale WR
    Crit Care Med; 2000 Oct; 28(10):3505-10. PubMed ID: 11057808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of cerebral arteriovenous oxygen difference in terminal phase of cerebral haemorrhage.
    Kaasik AE
    Scand J Clin Lab Invest Suppl; 1968; 102():X:D. PubMed ID: 5707567
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of arterial oxygen tension on cerebral blood flow at different levels of arterial PCO2.
    Flohr H; Pöll W; Brock M
    Experientia; 1970 Jun; 26(6):615. PubMed ID: 5424336
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.