These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 5719577)

  • 1. [Incorporation of exogenous adenosine and hypoxanthine in the nucleic acids of malaria parasites (Plasmodium berghei and Plasmodium vinckei)].
    Büngener W
    Z Parasitenkd; 1968; 31(1):1. PubMed ID: 5719577
    [No Abstract]   [Full Text] [Related]  

  • 2. [Nucleic acid metabolism in experimental malaria. 2. Incorporation of adenosine and hypoxanthine into the nucleic acids of malaria parasites (Plasmodium berghei and Plasmodium vinckei)].
    Büngener W; Nielsen G
    Z Tropenmed Parasitol; 1968 Jun; 19(2):185-97. PubMed ID: 4878204
    [No Abstract]   [Full Text] [Related]  

  • 3. [Nucleic acid metabolism in experimental malaria. 1. Studies on the incorporation of thymidine, uridine, and adenosine in the malaria parasite (Plasmodium berghei and Plasmodium vinckei)].
    Büngener W; Nielsen G
    Z Tropenmed Parasitol; 1967 Dec; 18(4):456-62. PubMed ID: 5613460
    [No Abstract]   [Full Text] [Related]  

  • 4. Phosphorylation of D-Arabinosyl adenine by Plasmodium berghei and its partial protection of mice against malaria.
    Ilan J; Tokuyasu K; Ilan J
    Nature; 1970 Dec; 228(5278):1300-1. PubMed ID: 5488096
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of tritiated hypoxanthine, adenine and adenosine for purine-salvage incorporation into nucleic acids of the malarial parasite, Plasmodium berghei.
    Van Dyke K
    Tropenmed Parasitol; 1975 Jun; 26(2):232-8. PubMed ID: 1099747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purine base and nucleoside uptake in Plasmodium berghei and host erythrocytes.
    Hansen BD; Sleeman HK; Pappas PW
    J Parasitol; 1980 Apr; 66(2):205-12. PubMed ID: 6993639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Nucleic acid metabolism in experimental malaria. 3. The utilization of adenine from the adenine-nucleotide pool of the erythrocytes for the synthesis of nucleic acids in malaria parasites (Plasmodium vinckei) in vivo].
    Büngener W; Nielsen G
    Z Tropenmed Parasitol; 1969 Mar; 20(1):67-73. PubMed ID: 4909005
    [No Abstract]   [Full Text] [Related]  

  • 8. Demonstration of a lipopolysaccharide-induced cytostatic effect on malarial parasites.
    Rzepczyk CM; Clark IA
    Infect Immun; 1981 Aug; 33(2):343-7. PubMed ID: 7275307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmodium berghei: in vitro incorporation of purine derivatives into nucleic acids.
    Lantz CH; Van Dyke K; Carter G
    Exp Parasitol; 1971 Jun; 29(3):402-16. PubMed ID: 5157772
    [No Abstract]   [Full Text] [Related]  

  • 10. Transport of 5-fluorouracil and uracil into human erythrocytes.
    Domin BA; Mahony WB; Zimmerman TP
    Biochem Pharmacol; 1993 Aug; 46(3):503-10. PubMed ID: 8347174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probable macrophage origin of the lipopolysaccharide-induced cytostatic effect on intra-erythrocytic malarial parasites (Plasmodium vinckei).
    Rzepczyk CM
    Immunology; 1982 Jun; 46(2):261-70. PubMed ID: 6282737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a simple culture of Plasmodium berghei for assessment of antiparasitic activity.
    Kamiyama T; Matsubara J
    Int J Parasitol; 1992 Dec; 22(8):1137-42. PubMed ID: 1487372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine metabolism by the avian malarial parasite Plasmodium lophurae.
    Yamada KA; Sherman IW
    Mol Biochem Parasitol; 1981 Aug; 3(4):253-64. PubMed ID: 7278883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinacrine: mechanisms of antimalarial action.
    Van Dyke K; Lantz C; Szustkiewicz C
    Science; 1970 Jul; 169(3944):492-3. PubMed ID: 5432269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxanthine metabolism by human malaria infected erythrocytes: focus for the design of new antimalarial drugs.
    Webster HK; Wiesmann WP; Walker MD; Bean T; Whaun JM
    Adv Exp Med Biol; 1984; 165 Pt A():219-23. PubMed ID: 6372377
    [No Abstract]   [Full Text] [Related]  

  • 16. The source of purines and pyrimidines in Plasmodium berghei.
    Van Dyke K; Tremblay GC; Lantz CH; Szustkiewicz C
    Am J Trop Med Hyg; 1970 Mar; 19(2):202-8. PubMed ID: 5443070
    [No Abstract]   [Full Text] [Related]  

  • 17. Biotransformation of 9-beta-D-arabinofurano-syladenine by rat and human erythrocytes.
    Drach JC; Bus JS; Schultz SK; Sandberg JN
    Biochem Pharmacol; 1974 Oct; 23(19):2761-7. PubMed ID: 4423608
    [No Abstract]   [Full Text] [Related]  

  • 18. A method for monitoring the viability of malaria parasites (Plasmodium yoelii) freed from the host erythrocytes.
    Izumo A; Tanabe K; Kato M
    Trans R Soc Trop Med Hyg; 1987; 81(2):264-7. PubMed ID: 3617188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purine uptake and utilization by the avian malaria parasite Plasmodium lophurae.
    Tracy SM; Sherman IW
    J Protozool; 1972 Aug; 19(3):541-9. PubMed ID: 5074425
    [No Abstract]   [Full Text] [Related]  

  • 20. Hypoxanthine depletion induced by xanthine oxidase inhibits malaria parasite growth in vitro.
    Berman PA; Human L
    Adv Exp Med Biol; 1991; 309A():165-8. PubMed ID: 1789199
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.