These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 5722049)

  • 1. Changes in heart rate during discriminative reward training and extinction in the cat.
    Seward JP; Braude RM
    J Comp Physiol Psychol; 1968 Oct; 66(2):396-401. PubMed ID: 5722049
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in heart rate during discriminative reward training and extinction in the rat.
    Seward JP; Cosmides RA; Humphrey GL
    J Comp Physiol Psychol; 1969 Mar; 67(3):358-63. PubMed ID: 5787386
    [No Abstract]   [Full Text] [Related]  

  • 3. Reward-produced memories regulate memory-discrimination learning, extinction, and other forms of discrimination learning.
    Capaldi EJ; Birmingham KM
    J Exp Psychol Anim Behav Process; 1998 Jul; 24(3):254-64. PubMed ID: 9679304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in heart rate during avoidance training and extinction in the cat.
    Seward JP; Humphrey GL
    J Comp Physiol Psychol; 1968 Dec; 66(3):764-8. PubMed ID: 5721505
    [No Abstract]   [Full Text] [Related]  

  • 5. The hippocampus and response perseveration in the cat.
    Brown TS; Kaufmann PG; Marco LA
    Brain Res; 1969 Jan; 12(1):86-98. PubMed ID: 5802486
    [No Abstract]   [Full Text] [Related]  

  • 6. Extinction after regular and irregular reward schedules in the infant rat: influence of age and training duration.
    Lilliquist MW; Nair HP; Gonzalez-Lima F; Amsel A
    Dev Psychobiol; 1999 Jan; 34(1):57-70. PubMed ID: 9919433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects upon conditioned response time of contingent photic stimulation in cats.
    Uramoto I
    Physiol Behav; 1971 Feb; 6(2):203-4. PubMed ID: 5125474
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of hypothalamically motivated eating by rewarding stimulation through the same electrode.
    Huston JP
    Physiol Behav; 1972 Jun; 8(6):1121-5. PubMed ID: 5074026
    [No Abstract]   [Full Text] [Related]  

  • 9. Resistance to extinction as a joint function of reward magnitude and the spacing of extinction trials.
    HILL WF; SPEAR NE
    J Exp Psychol; 1962 Dec; 64():636-9. PubMed ID: 13954554
    [No Abstract]   [Full Text] [Related]  

  • 10. Resistance to extinction after varying amounts of discriminative or nondiscriminative instrumental training.
    D'AMATO MR; SCHIFF D; JAGODA H
    J Exp Psychol; 1962 Nov; 64():526-32. PubMed ID: 14024523
    [No Abstract]   [Full Text] [Related]  

  • 11. Excitotoxic lesions of the medial striatum delay extinction of a reinforcement color discrimination operant task in domestic chicks; a functional role of reward anticipation.
    Ichikawa Y; Izawa E; Matsushima T
    Brain Res Cogn Brain Res; 2004 Dec; 22(1):76-83. PubMed ID: 15561503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative effects of amphetamine, scopolamine, chlordiazepoxide, and diphenylhydantoin on operant and extinction behavior with brain stimulation and food reward.
    Olds ME
    Neuropharmacology; 1970 Nov; 9(6):519-32. PubMed ID: 5497006
    [No Abstract]   [Full Text] [Related]  

  • 13. Reward and aftereffects of reward in the learning of goldfish.
    Mackintosh NJ
    J Comp Physiol Psychol; 1971 Aug; 76(2):225-32. PubMed ID: 5159008
    [No Abstract]   [Full Text] [Related]  

  • 14. Instrumental learning of heart rate changes in curarized rats: shaping, and specificity to discriminative stimulus.
    Miller NE; DiCara L
    J Comp Physiol Psychol; 1967 Feb; 63(1):12-9. PubMed ID: 6029703
    [No Abstract]   [Full Text] [Related]  

  • 15. Response rate viewed as engagement bouts: resistance to extinction.
    Shull RL; Gaynor ST; Grimes JA
    J Exp Anal Behav; 2002 May; 77(3):211-31. PubMed ID: 12083677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of variable reward conditions on T-maze acquisition and extinction in rats.
    Waller TG
    Psychol Rep; 1971 Aug; 29(1):163-6. PubMed ID: 5106481
    [No Abstract]   [Full Text] [Related]  

  • 17. Basolateral amygdala lesions impair both cue- and cocaine-induced reinstatement in animals trained on a discriminative stimulus task.
    Yun IA; Fields HL
    Neuroscience; 2003; 121(3):747-57. PubMed ID: 14568033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-cycloserine in the basolateral amygdala prevents extinction and enhances reconsolidation of odor-reward associative learning in rats.
    Portero-Tresserra M; Martí-Nicolovius M; Guillazo-Blanch G; Boadas-Vaello P; Vale-Martínez A
    Neurobiol Learn Mem; 2013 Feb; 100():1-11. PubMed ID: 23200640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of the two rewards in a differential magnitude of reward discrimination.
    MacKinnon JR
    J Exp Psychol; 1967 Nov; 75(3):329-38. PubMed ID: 6079847
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of excitotoxic lesions of the basolateral amygdala on cocaine-seeking behavior and cocaine conditioned place preference in rats.
    Fuchs RA; Weber SM; Rice HJ; Neisewander JL
    Brain Res; 2002 Mar; 929(1):15-25. PubMed ID: 11852027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.