These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 5722247)

  • 1. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons.
    Gibson DT; Koch JR; Schuld CL; Kallio RE
    Biochemistry; 1968 Nov; 7(11):3795-802. PubMed ID: 5722247
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene.
    Gibson DT; Koch JR; Kallio RE
    Biochemistry; 1968 Jul; 7(7):2653-62. PubMed ID: 4298226
    [No Abstract]   [Full Text] [Related]  

  • 3. The metabolism of p-fluorobenzoic acid by a Pseudomonas sp.
    Harper DB; Blakley ER
    Can J Microbiol; 1971 Aug; 17(8):1015-23. PubMed ID: 4328873
    [No Abstract]   [Full Text] [Related]  

  • 4. Initial reactions in the bacterial degradation of aromatic hydrocarbons.
    Gibson DT
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):157-68. PubMed ID: 998044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of mammalian hydroxylation: some novel metabolites of chlorobenzene.
    Smith JR; Shaw BA; Foulkes DM
    Xenobiotica; 1972 May; 2(3):215-26. PubMed ID: 5076568
    [No Abstract]   [Full Text] [Related]  

  • 6. Microbial degradation of halogenated compounds.
    Chapman PJ
    Biochem Soc Trans; 1976; 4(3):436-6. PubMed ID: 1001694
    [No Abstract]   [Full Text] [Related]  

  • 7. Selective enrichment of Pseudomonas spp. defective in catabolism after exposure to halogenated substrates.
    Wigmore GJ; Ribbons DW
    J Bacteriol; 1981 Jun; 146(3):920-7. PubMed ID: 7240088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida.
    Gibson DT; Hensley M; Yoshioka H; Mabry TJ
    Biochemistry; 1970 Mar; 9(7):1626-30. PubMed ID: 4314232
    [No Abstract]   [Full Text] [Related]  

  • 9. Engineering hybrid pseudomonads capable of utilizing a wide range of aromatic hydrocarbons and of efficient degradation of trichloroethylene.
    Suyama A; Iwakiri R; Kimura N; Nishi A; Nakamura K; Furukawa K
    J Bacteriol; 1996 Jul; 178(14):4039-46. PubMed ID: 8763929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative metabolism of DDT, methylchlor, and ethoxychlor in mouse, insects, and in a model ecosystem.
    Kapoor IP; Metcalf RL; Hirwe AS; Lu PY; Coats JR; Nystrom RF
    J Agric Food Chem; 1972; 20(1):1-6. PubMed ID: 5059937
    [No Abstract]   [Full Text] [Related]  

  • 11. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes.
    Cavalca L; Dell'Amico E; Andreoni V
    Appl Microbiol Biotechnol; 2004 May; 64(4):576-87. PubMed ID: 14624316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular migrations of aryl substituents during enzymatic hydroxylation.
    Daly JW; Guroff G; Jerina DM; Udenfriend S; Witkop B
    Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1600-4. PubMed ID: 5745910
    [No Abstract]   [Full Text] [Related]  

  • 13. Constructing microbial strains for degradation of halogenated aromatic hydrocarbons.
    Chapman PJ
    Basic Life Sci; 1988; 45():81-95. PubMed ID: 3052415
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolism of endrin by certain soil microorganisms.
    Matsumura F; Khanvilkar VG; Patil KC; Boush GM
    J Agric Food Chem; 1971; 19(1):27-31. PubMed ID: 5540755
    [No Abstract]   [Full Text] [Related]  

  • 15. Initial reactions in the oxidation of ethylbenzene by Pseudomonas putida.
    Gibson DT; Gschwendt B; Yeh WK; Kobal VM
    Biochemistry; 1973 Apr; 12(8):1520-8. PubMed ID: 4699984
    [No Abstract]   [Full Text] [Related]  

  • 16. Enhancement of co-metabolism of chlorobenzoates by the co-substrate enrichment technique.
    Horvath RS
    Appl Microbiol; 1973 Jun; 25(6):961-3. PubMed ID: 4716724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological attributes of microbial BTEX degradation in oxygen-limited environments.
    Olsen RH; Mikesell MD; Kukor JJ; Byrne AM
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):49-51. PubMed ID: 8565910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolism of aromatic compounds by micro-organisms.
    Dagley S
    Adv Microb Physiol; 1971; 6(0):1-46. PubMed ID: 4950664
    [No Abstract]   [Full Text] [Related]  

  • 19. Application of nitrate to enhance biodegradation of gasoline components in soil by indigenous microorganisms under anoxic condition.
    Yang SC; Song Y; Wang D; Wei WX; Yang Y; Men B; Li JB
    Environ Technol; 2016; 37(9):1045-53. PubMed ID: 26508265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial degradation of aromatic compounds.
    Gibson DT
    Science; 1967 Sep; 161(3846):1093-7. PubMed ID: 5597305
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.