These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 572228)

  • 61. The effects of alkylthioacetic acids (3-thia fatty acids) on fatty acid metabolism in isolated hepatocytes.
    Skrede S; Narce M; Bergseth S; Bremer J
    Biochim Biophys Acta; 1989 Oct; 1005(3):296-302. PubMed ID: 2804058
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Oxidation of long-chain fatty acids by the mitochondria of different types of muscles.
    Dvoráková L
    Physiol Bohemoslov; 1970; 19(1):43-8. PubMed ID: 4249001
    [No Abstract]   [Full Text] [Related]  

  • 63. Energetics underlying the process of long-chain fatty acid transport.
    Azizan A; Sherin D; DiRusso CC; Black PN
    Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825
    [TBL] [Abstract][Full Text] [Related]  

  • 64. DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells.
    Montell E; Turini M; Marotta M; Roberts M; Noé V; Ciudad CJ; Macé K; Gómez-Foix AM
    Am J Physiol Endocrinol Metab; 2001 Feb; 280(2):E229-37. PubMed ID: 11158925
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fatty acids as an energy source for the operation of axoplasmic transport.
    Takenaka T; Hiruma H; Hori H; Hashimoto Y; Ichikawa T; Kawakami T
    Brain Res; 2003 May; 972(1-2):38-43. PubMed ID: 12711076
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Uptake of palmitic acid by rabbit alveolar type II cells.
    Maniscalco WM; Stremmel W; Heeney-Campbell M
    Am J Physiol; 1990 Oct; 259(4 Pt 1):L206-12. PubMed ID: 2221082
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Carrier-protein-mediated enhancement of fatty-acid binding and internalization in human T-lymphocytes.
    Uriel J; Torres JM; Anel A
    Biochim Biophys Acta; 1994 Feb; 1220(3):231-40. PubMed ID: 7508265
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Constraints on the uptake of labeled palmitate by the heart. The barriers at the capillary and sarcolemmal surfaces and the control of intracellular sequestration.
    Rose CP; Goresky CA
    Circ Res; 1977 Oct; 41(4):534-45. PubMed ID: 902359
    [No Abstract]   [Full Text] [Related]  

  • 69. Control of normal differentiation of myeloid leukemic cells. X. Glucose utilization, cellular ATP and associated membrane changes in D+ and D- cells.
    Vlodavsky I; Fibach E; Sachs L
    J Cell Physiol; 1975 Dec; 87(2):167-77. PubMed ID: 1061711
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fatty acid oxidation in embryonic chick tissues.
    Pugh E; Sidbury JB
    Biochim Biophys Acta; 1971 Sep; 239(3):376-83. PubMed ID: 5113500
    [No Abstract]   [Full Text] [Related]  

  • 71. Fatty acid metabolism of the calanoid copepod Paracalanus parvus: 2. Palmitate, stearate, oleate and acetate.
    Moreno VJ; de Moreno JE; Brenner RR
    Lipids; 1979 Apr; 14(4):318-22. PubMed ID: 440022
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metabolic fate of oleic acid, palmitic acid and stearic acid in cultured hamster hepatocytes.
    Bruce JS; Salter AM
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):847-52. PubMed ID: 8670161
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Na+-dependent amino acid transport in preimplantation mouse embryos. II. Metabolic inhibitors and nature of the cation requirement.
    Borland RM; Tasca RJ
    Dev Biol; 1975 Sep; 46(1):192-201. PubMed ID: 1158023
    [No Abstract]   [Full Text] [Related]  

  • 74. The binding of fatty acids to cytoplasmic proteins: binding to Z protein in liver and other tissues of the rat.
    Mishkin S; Stein L; Gatmaitan Z; Arias IM
    Biochem Biophys Res Commun; 1972 Jun; 47(5):997-1003. PubMed ID: 5029869
    [No Abstract]   [Full Text] [Related]  

  • 75. Mechanism of the stimulation of respiration by fatty acids in rat liver.
    Plomp PJ; van Roermund CW; Groen AK; Meijer AJ; Tager JM
    FEBS Lett; 1985 Dec; 193(2):243-6. PubMed ID: 4065340
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [A new pathway for oleic acid biosynthesis in plants].
    Mazliak P; Decotte AM
    Biochimie; 1973; 55(11):1481-9. PubMed ID: 4790853
    [No Abstract]   [Full Text] [Related]  

  • 77. [Planar scintigraphy versus PET in measuring fatty acid metabolism of the heart].
    Kaiser KP; Feinendegen LE
    Herz; 1987 Feb; 12(1):41-50. PubMed ID: 3493962
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biosynthesis of wax esters in fish. Reduction of fatty acids and oxidation of alcohols.
    Sand DM; Hehl JL; Schlenk H
    Biochemistry; 1969 Dec; 8(12):4851-4. PubMed ID: 5365785
    [No Abstract]   [Full Text] [Related]  

  • 79. Inhibition of thiamine transport in anaerobic baker's yeast by iodoacetate, 2,4-dinitrophenol N,N'-dicyclohexylcarbodiimide and fatty acids.
    Iwashima A; Nose Y
    Biochim Biophys Acta; 1975 Aug; 399(2):375-83. PubMed ID: 1100110
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Uptake and metabolism of fatty acids by dispersed adult rat heart myocytes. II. Inhibition by albumin and fatty acid homologues, and the effect of temperature and metabolic reagents.
    DeGrella RF; Light RJ
    J Biol Chem; 1980 Oct; 255(20):9739-45. PubMed ID: 6159348
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.