BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 5723)

  • 1. Desensitization of beta-adrenergic receptors by beta-adrenergic agonists in a cell-free system: resensitization by guanosine 5'-(beta, gamma-imino)triphosphate and other purine nucleotides.
    Mukherjee C; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 1976 May; 73(5):1494-8. PubMed ID: 5723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of beta-adrenergic receptors by guanyl-5'-yl imidodiphosphate and other purine nucleotides.
    Lefkowitz RJ; Mullikin D; Caron MG
    J Biol Chem; 1976 Aug; 251(15):4686-92. PubMed ID: 947904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of adenylate cyclase-coupled beta-adrenergic receptors in frog erythrocytes with (minus)-[3-H] alprenolol.
    Mukherjee C; Caron MG; Coverstone M; Lefkowitz RJ
    J Biol Chem; 1975 Jul; 250(13):4869-76. PubMed ID: 238972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of adenylate cyclase by hormones and guanine nucleotides in normal, desensitized, and resensitized rabbit heart.
    Tkachuk VA
    Adv Myocardiol; 1982; 3():305-16. PubMed ID: 6302774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A beta-adrenergic receptor of the turkey erythrocyte. I. Binding of catecholamine and relationship to adenylate cyclase activity.
    Bilezikian JP; Aurbach GD
    J Biol Chem; 1973 Aug; 248(16):5577-83. PubMed ID: 4146752
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of adenylate cyclase coupled beta-adrenergic receptors.
    Lefkowitz RJ; Mukherjee C; Limbird LE; Caron MG; Williams LT; Alexander RW; Mickey JV; Tate R
    Recent Prog Horm Res; 1976; 32():597-632. PubMed ID: 785560
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of beta adrenergic receptors in isolated frog erythrocyte plasma membranes.
    Mukherjee C; Lefkowitz RJ
    Mol Pharmacol; 1977 Mar; 13(2):291-303. PubMed ID: 16207
    [No Abstract]   [Full Text] [Related]  

  • 8. Use of (-)-[3H]dihydroalprenolol to study beta adrenergic receptor-adenylate cyclase coupling in C6 glioma cells: role of 5'-guanylylimidodiphosphate.
    Lucas M; Bockaert J
    Mol Pharmacol; 1977 Mar; 13(2):314-29. PubMed ID: 192993
    [No Abstract]   [Full Text] [Related]  

  • 9. Adipocyte beta-adrenergic receptors. Identification and subcellular localization by (-)-[3H]dihydroalprenolol binding.
    Williams LT; Jarett L; Lefkowitz RJ
    J Biol Chem; 1976 May; 251(10):3096-104. PubMed ID: 942608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of cell fusion techniques to probe the mechanism of catecholamine-induced desensitization of adenylate cyclase in frog erythrocytes.
    Pike LJ; Lefkowitz RJ
    Biochim Biophys Acta; 1980 Oct; 632(3):354-65. PubMed ID: 6251915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change of coupling system of receptor-adenylate cyclase induced by epinephrine and GTP in plasma membranes of rat liver.
    Okamura N; Terayama H
    Biochim Biophys Acta; 1978 Nov; 544(1):113-27. PubMed ID: 214146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of adenylate cyclase coupled beta-adrenergic receptors by beta-adrenergic catecholamines.
    Mukherjee C; Caron MG; Lefkowitz RJ
    Endocrinology; 1976 Aug; 99(2):347-57. PubMed ID: 954636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of beta-adrenergic receptors in untreated and butyrate-treated Hela cells.
    Tallman JF; Smith CC; Henneberry RC
    Biochim Biophys Acta; 1978 Jul; 541(3):288-300. PubMed ID: 208639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a second desensitized state of beta-adrenergic receptor with low affinity for beta-antagonists and normal reactivity towards beta-agonists in adipocyte membranes previously exposed to beta-antagonists.
    Giudicelli Y; Lacasa D; Agli B
    Eur J Biochem; 1979 Sep; 99(3):457-62. PubMed ID: 227682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity chromatography of the beta-adrenergic receptor from turkey erythrocytes.
    Vauquelin G; Geynet P; Hanoune J; Strosberg AD
    Eur J Biochem; 1979 Aug; 98(2):543-56. PubMed ID: 226363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative cooperativity among beta-adrenergic receptors in frog erythrocyte membranes.
    Limbird LE; Lefkowitz RJ
    J Biol Chem; 1976 Aug; 251(16):5007-14. PubMed ID: 956174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of nucleotides on the expression of beta-adrenergic adenylate cyclase activity in membranes from turkey erythrocytes.
    Bilezikian JP; Aurbach GD
    J Biol Chem; 1974 Jan; 249(1):157-61. PubMed ID: 4809625
    [No Abstract]   [Full Text] [Related]  

  • 18. Stereospecific (3H)(minus)-alprenolol binding sites, beta-adrenergic receptors and adenylate cyclase.
    Lefkowitz RJ; Mukherjee C; Coverstone M; Caron MG
    Biochem Biophys Res Commun; 1974 Sep; 60(2):703-9. PubMed ID: 4370935
    [No Abstract]   [Full Text] [Related]  

  • 19. Beta-adrenergic receptor in the brain: comparison of 3H-dihydroalprenolol binding sites and a beta-adrenergic receptor regulating adenylyl cyclase activity in cell free homogenates.
    Cote TE; Kebabian JW
    Life Sci; 1978 Oct; 23(16):1703-13. PubMed ID: 31528
    [No Abstract]   [Full Text] [Related]  

  • 20. Differential effects of GTP on the coupling of beta-adrenergic receptors to adenylate cyclase from frog and turkey erythrocytes. Application of new methods for the analysis of receptor-effector coupling.
    Limbird LE; DeLean A; Hickey AR; Pike LJ; Lefkowitz RJ
    Biochim Biophys Acta; 1979 Aug; 586(2):298-314. PubMed ID: 224939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.