BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 572475)

  • 41. Leucyl-tRNA synthetase regulates lactation and cell proliferation via mTOR signaling in dairy cow mammary epithelial cells.
    Wang L; Lin Y; Bian Y; Liu L; Shao L; Lin L; Qu B; Zhao F; Gao X; Li Q
    Int J Mol Sci; 2014 Apr; 15(4):5952-69. PubMed ID: 24722568
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Chinese hamster ovary leucyl-tRNA synthetase mutant with a uniquely altered high molecular weight leucyl-tRNA synthetase complex.
    Mansukhani A; Condon T; Hampel A; Oxender DL
    Biochem Genet; 1984 Apr; 22(3-4):349-55. PubMed ID: 6732751
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The characterization of phosphoseryl tRNA from lactating bovine mammary gland.
    Sharp SJ; Stewart TS
    Nucleic Acids Res; 1977 Jul; 4(7):2123-36. PubMed ID: 242796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specific activation of particulate leucyl-tRNA synthetase complexes.
    Klekamp M; Pahuski E; Hampel A
    Biochemistry; 1982 Jul; 21(14):3513-7. PubMed ID: 6126211
    [No Abstract]   [Full Text] [Related]  

  • 45. [Isolation and characterization of individual tRNA Leu 1,2,and 4 from the bovine udder].
    Tukalo MA; Vasil'eva IG; Turkovskaia GV; El'skaia AV; Matsuka GKh
    Biokhimiia; 1983 Dec; 48(12):1984-7. PubMed ID: 6561041
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The absence of structural relationship between mitochondrial and mitochondrial and cytoplasmic leucyl-tRNA synthetases from Tetrahymena pyriformis.
    Chiu AO; Suyama Y
    Arch Biochem Biophys; 1975 Nov; 171(1):43-54. PubMed ID: 242273
    [No Abstract]   [Full Text] [Related]  

  • 47. Leucyl-tRNA and arginyl-tRNA synthetases of wheat germ: inactivation and ribosome effects.
    Carias JR; Mouricout M; Quintard B; Thomes JC; Julien R
    Eur J Biochem; 1978 Jul; 87(3):583-90. PubMed ID: 679950
    [No Abstract]   [Full Text] [Related]  

  • 48. Altered leucyl-transfer RNA synthetase from a mammalian cell culture mutant.
    Haars L; Hampel A; Thompson L
    Biochim Biophys Acta; 1976 Dec; 454(3):493-503. PubMed ID: 11833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Association between Archaeal prolyl- and leucyl-tRNA synthetases enhances tRNA(Pro) aminoacylation.
    Praetorius-Ibba M; Rogers TE; Samson R; Kelman Z; Ibba M
    J Biol Chem; 2005 Jul; 280(28):26099-104. PubMed ID: 15917221
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular weight and subunit size of rabbit mammary-gland fatty acid synthetase.
    Grunnet I; Knudsen J
    Biochem J; 1978 Sep; 173(3):929-33. PubMed ID: 708381
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leucyl-tRNA synthetase from the extreme thermophile Aquifex aeolicus has a heterodimeric quaternary structure.
    Gouda M; Yokogawa T; Asahara H; Nishikawa K
    FEBS Lett; 2002 May; 518(1-3):139-43. PubMed ID: 11997034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Properties of leucyl-tRNA synthetase from Discoglossus pictus tadpoles. Influence of Mg-2+ ions on the enzymatic activity.
    Neauport C
    Comp Biochem Physiol B; 1975 Jun; 51(2):229-33. PubMed ID: 1139890
    [No Abstract]   [Full Text] [Related]  

  • 53. The effects of zinc ions on activities of tRNALeu and leucyl-tRNA synthetase of mice liver.
    Rodovicius H; Viezeliene D; Sadauskiene I; Valentukonyte S; Ivanov L
    Medicina (Kaunas); 2004; 40(10):982-6. PubMed ID: 15516822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Purification and properties of bovine liver seryl-tRNA synthetase.
    Mizutani T; Narihara T; Hashimoto A
    Eur J Biochem; 1984 Aug; 143(1):9-13. PubMed ID: 6565588
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Limited proteolysis of the tryptophanyl-tRNA synthetase.
    Prasolov VS; Favorova OO; Margulis GV; Kisselev LL
    Biochim Biophys Acta; 1975 Jan; 378(1):92-106. PubMed ID: 1168077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid.
    Herrington MD; Hawtrey AO
    Biochem J; 1970 Feb; 116(3):405-14. PubMed ID: 5435687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial protein synthesis in a mammalian cell-line with a temperature-sensitive leucyl-tRNA synthetase.
    Wallace RB; Williams TM; Freeman KB
    Eur J Biochem; 1975 Nov; 59(1):167-73. PubMed ID: 1204605
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiple molecular forms of cysteinyl-tRNA synthetase from rat liver: purification and subunit structure.
    Pan F; Lee HH; Pai SH; Yu TC; Guoo JY; Duh GM
    Biochim Biophys Acta; 1976 Nov; 452(1):271-83. PubMed ID: 990314
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reformation of leucyl-tRNA synthetase complexes in revertants from CHO mutant tsH1.
    Klekamp M; Pahuski E; Hampel A
    Somatic Cell Genet; 1981 Nov; 7(6):725-35. PubMed ID: 7323950
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of an apparent aminoacyl-tRNA synthetase activator factor as tRNA nucleotidyltransferase.
    del Rio JM; Heredia CF
    Mol Cell Biochem; 1983; 50(2):101-6. PubMed ID: 6855746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.