These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 5726299)

  • 1. Specificity and control of choline-O-sulfate transport in filamentous fungi.
    Bellenger N; Nissen P; Wood TC; Segel IH
    J Bacteriol; 1968 Nov; 96(5):1574-85. PubMed ID: 5726299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of sulfate transport in filamentous fungi.
    Bradfield G; Somerfield P; Meyn T; Holby M; Babcock D; Bradley D; Segel IH
    Plant Physiol; 1970 Nov; 46(5):720-7. PubMed ID: 16657536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of choline sulphatase synthesis and activity in Aspergillus nidulans.
    Scott JM; Spencer B
    Biochem J; 1968 Jan; 106(2):471-7. PubMed ID: 5637354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for two distinct intracellular pools of inorganic sulfate in Penicillium notatum.
    Hunter DR; Segel IH
    J Bacteriol; 1985 Jun; 162(3):881-7. PubMed ID: 3997782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of choline O-sulphate utilization in fungi.
    Spencer B; Hussey EC; Orsi BA; Scott JM
    Biochem J; 1968 Jan; 106(2):461-9. PubMed ID: 5637353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of transport processes for sulfur, selenium, and molybdenum anions by filamentous fungi.
    Tweedie JW; Segel IH
    Biochim Biophys Acta; 1970 Jan; 196(1):95-106. PubMed ID: 5412251
    [No Abstract]   [Full Text] [Related]  

  • 7. Genetic and metabolic control of sulfate metabolism in Neurospora crassa: a specific permease for choline-O-sulfate.
    Marzluf GA
    Biochem Genet; 1972 Dec; 7(3):219-33. PubMed ID: 4265021
    [No Abstract]   [Full Text] [Related]  

  • 8. ATP sulfurylase from Penicillium chrysogenum: is the internal level of the enzyme sufficient to account for the rate of sulfate utilization?
    Farley JR; Mayer S; Chandler CJ; Segel IH
    J Bacteriol; 1979 Jan; 137(1):350-6. PubMed ID: 104967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transinhibition kinetics of the sulfate transport system of Penicillium notatum: analysis based on an iso uni uni velocity equation.
    Cuppoletti J; Segel IH
    J Membr Biol; 1974 Jul; 17(3):239-52. PubMed ID: 4847761
    [No Abstract]   [Full Text] [Related]  

  • 10. The specific interaction of chromate with the dual sulfate permease systems of Neurospora crassa.
    Roberts KR; Marzluf GA
    Arch Biochem Biophys; 1971 Feb; 142(2):651-9. PubMed ID: 5550165
    [No Abstract]   [Full Text] [Related]  

  • 11. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum.
    Benko PV; Wood TC; Segel IH
    Arch Biochem Biophys; 1969 Feb; 129(2):498-508. PubMed ID: 5772963
    [No Abstract]   [Full Text] [Related]  

  • 12. Site-directed mutagenesis of cysteine-148 in the lac permease of Escherichia coli: effect on transport, binding, and sulfhydryl inactivation.
    Viitanen PV; Menick DR; Sarkar HK; Trumble WR; Kaback HR
    Biochemistry; 1985 Dec; 24(26):7628-35. PubMed ID: 3912006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of an inducible citrate uptake system in Penicillium simplicissimum.
    Simkovic M; KalinĂ¡k M; Burgstaller W; Varecka L
    FEMS Microbiol Lett; 2002 Jul; 213(1):21-6. PubMed ID: 12127483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioenergetics of the alkaliphilic sulfate-reducing bacterium Desulfonatronovibrio hydrogenovorans.
    Sydow U; Wohland P; Wolke I; Cypionka H
    Microbiology (Reading); 2002 Mar; 148(Pt 3):853-860. PubMed ID: 11882721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assimilatory sulfur metabolism in marine microorganisms: characteristics and regulation of sulfate transport in Pseudomonas halodurans and Alteromonas luteo-violaceus.
    Cuhel RL; Taylor CD; Jannasch HW
    J Bacteriol; 1981 Aug; 147(2):340-9. PubMed ID: 7263610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of sulfate transport in cultured tobacco cells.
    Smith IK
    Plant Physiol; 1976 Sep; 58(3):358-62. PubMed ID: 16659678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate transport via Na+ -Pi cotransport and anion exchange in lactating rat mammary tissue.
    Shillingford JM; Calvert DT; Beechey RB; Shennan DB
    Exp Physiol; 1996 Mar; 81(2):273-84. PubMed ID: 8845141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cycloheximide on L-leucine transport by Penicillium chrysogenum: involvement of calcium.
    Hunter DR; Norberg CL; Segel IH
    J Bacteriol; 1973 Jun; 114(3):956-60. PubMed ID: 4200128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic properties, nutrient-dependent regulation and energy coupling of amino-acid transport systems in Penicillium cyclopium.
    Roos W
    Biochim Biophys Acta; 1989 Jan; 978(1):119-33. PubMed ID: 2563328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choline sulfate permease. Transfer of information from bacteria to higher plants?
    Nissen P
    Biochem Biophys Res Commun; 1968 Aug; 32(4):696-703. PubMed ID: 5682293
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.