These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 5727390)

  • 1. The kinetics of haemolysis of human erythrocytes in hypotonic solutions of glucose.
    Good W; Rose SM
    Biochim Biophys Acta; 1968 Dec; 163(4):483-93. PubMed ID: 5727390
    [No Abstract]   [Full Text] [Related]  

  • 2. The haemolysis of human erythrocytes in relation to the lattice structure of water. I. Delayed haemolysis in hypotonic malonamide solutions.
    GOOD W
    Biochim Biophys Acta; 1960 Oct; 44():130-43. PubMed ID: 13706982
    [No Abstract]   [Full Text] [Related]  

  • 3. The kinetics of malonamide-induced haemolysis of mammalian erythrocytes. II. The Eyring activation parameters.
    Coldman MF; Good W
    Biochim Biophys Acta; 1968 Mar; 150(2):206-13. PubMed ID: 5641890
    [No Abstract]   [Full Text] [Related]  

  • 4. The haemolysis of human erythrocytes in relation to the lattice structure of water. II. The effect of nonelectrolytes on malonamide-induced haemolysis.
    GOOD W
    Biochim Biophys Acta; 1961 Jul; 50():486-94. PubMed ID: 13706984
    [No Abstract]   [Full Text] [Related]  

  • 5. Water relations in the malonamide-induced haemolysis of mammalian erythrocytes.
    Good W
    J Theor Biol; 1978 Sep; 74(2):279-96. PubMed ID: 713577
    [No Abstract]   [Full Text] [Related]  

  • 6. The kinetics of malonamide-induced haemolysis of mammalian erythrocytes. I. The Arrhenius activation parameters.
    Coldman MF; Good W
    Biochim Biophys Acta; 1968 Mar; 150(2):194-205. PubMed ID: 5641889
    [No Abstract]   [Full Text] [Related]  

  • 7. Permeability of the bovine red cell to glycerol in hyperosmotic solutions at various temperatures.
    Mazur P; Leibo SP; Miller RH
    J Membr Biol; 1974; 15(2):107-36. PubMed ID: 4838035
    [No Abstract]   [Full Text] [Related]  

  • 8. The haemolysis of human erythrocytes in relation to the lattice structure of water. II. The effect of electrolytes on malonamide-induced haemolysis.
    GOOD W
    Biochim Biophys Acta; 1961 Apr; 48():229-41. PubMed ID: 13706983
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of prostaglandins E1, E2, F1 alpha and F2 alpha on pig erythrocytes during haemolysis induced with aspirin and hypotonic NaCl solution.
    Ledwozyw A; Pruszkowska R; Trawińska B; Ruciński T; Kadiołka A
    Acta Physiol Pol; 1985; 36(5-6):352-9. PubMed ID: 3837604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Method of study of hypotonic hemolysis of erythrocytes (according to kinetics of discharge of intracellular potassium and hemoglobin)].
    Koval' NN; Karmanova TT; Mishurina LA
    Probl Gematol Pereliv Krovi; 1975 Apr; 20(4):59-60. PubMed ID: 1228770
    [No Abstract]   [Full Text] [Related]  

  • 11. The haemolytic effect of verapamil on erythrocytes exposed to varying osmolarity.
    Watts TJ; Handy RD
    Toxicol In Vitro; 2007 Aug; 21(5):835-9. PubMed ID: 17398066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypotonic hemolysis of human red blood cells: a two-phase process.
    Saari JT; Beck JS
    J Membr Biol; 1975; 23(3-4):213-26. PubMed ID: 1195346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hydrational effect of leptazol and its theoretical connection with glucose deficiency in the haemolysis of rabbit erythrocytes.
    Coldman MF; Good W
    Biochim Biophys Acta; 1969 Jul; 183(2):346-9. PubMed ID: 5792245
    [No Abstract]   [Full Text] [Related]  

  • 14. The haemolysis of human erythrocytes in relation to the lattice structure of water. V. Osmotic haemolysis in solutions of electroytes.
    GOOD W
    Biochim Biophys Acta; 1961 Nov; 53():549-56. PubMed ID: 13900251
    [No Abstract]   [Full Text] [Related]  

  • 15. The haemolysis of human erythrocytes in relation to the lattice structure of water. IV. Rapid haemolysis in solutions of erythrocyte-permeable substances.
    GOOD W
    Biochim Biophys Acta; 1961 Sep; 52():545-51. PubMed ID: 13900250
    [No Abstract]   [Full Text] [Related]  

  • 16. Human red cell hemolysis rates in the subsecond to seconds range. An analysis.
    Anderson PC; Lovrien RE
    Biophys J; 1977 Nov; 20(2):181-91. PubMed ID: 911981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haemolysis of various mammalian erythrocytes in sodium chloride, glucose and phosphate-buffer solutions.
    Matsuzawa T; Ikarashi Y
    Lab Anim; 1979 Oct; 13(4):329-31. PubMed ID: 43414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of lysophosphatidylcholine on salt permeability through the erythrocyte membrane under haemolytic conditions.
    Eskelinen S
    Gen Physiol Biophys; 1986 Dec; 5(6):637-47. PubMed ID: 3557104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of hydration in the effect of barbiturates on the haemolysis of rabbit erythrocytes.
    Coldman MF; Good W; Swift D
    Biochim Biophys Acta; 1969 Jan; 173(1):62-70. PubMed ID: 5775940
    [No Abstract]   [Full Text] [Related]  

  • 20. Delayed hemolysis of human erythrocytes in solutions of glucose.
    HENDRY EB
    J Gen Physiol; 1952 Mar; 35(4):605-16. PubMed ID: 14898038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.