These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 572825)
1. Evidence for a fatty acid reductase catalyzing the synthesis of aldehydes for the bacterial bioluminescent reaction. Resolution from luciferase and dependence on fatty acids. Riendeau D; Meighen E J Biol Chem; 1979 Aug; 254(16):7488-90. PubMed ID: 572825 [TBL] [Abstract][Full Text] [Related]
2. Fatty acid reductase in bioluminescent bacteria. Resolution from aldehyde reductases and characterization of the aldehyde product. Riendeau D; Meighen E Can J Biochem; 1981 Jun; 59(6):440-6. PubMed ID: 7296339 [TBL] [Abstract][Full Text] [Related]
3. Co-induction of fatty acid reductase and luciferase during development of bacterial bioluminescence. Riendeau D; Meighen E J Biol Chem; 1980 Dec; 255(24):12060-5. PubMed ID: 7440587 [TBL] [Abstract][Full Text] [Related]
4. Conversion of aldehyde to acid in the bacterial bioluminescent reaction. Dunn DK; Michaliszyn GA; Bogacki IG; Meighen EA Biochemistry; 1973 Nov; 12(24):4911-8. PubMed ID: 4796920 [No Abstract] [Full Text] [Related]
5. Differential acylation in vitro with tetradecanoyl coenzyme A and tetradecanoic acid (+ATP) of three polypeptides shown to have induced synthesis in Photobacterium phosphoreum. Wall L; Rodriquez A; Meighen E J Biol Chem; 1984 Feb; 259(3):1409-14. PubMed ID: 6693412 [TBL] [Abstract][Full Text] [Related]
6. Studies on luciferase form Photobacterium phosphoreum. V. An enzyme-FMN intermediate complex in the bioluminescent reaction. Yoshida K; Takahashi M; Nakamura T J Biochem; 1974 Mar; 75(3):583-9. PubMed ID: 4834652 [No Abstract] [Full Text] [Related]
7. Generation of fatty acids by an acyl esterase in the bioluminescent system of Photobacterium phosphoreum. Carey LM; Rodriguez A; Meighen E J Biol Chem; 1984 Aug; 259(16):10216-21. PubMed ID: 6147345 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of bioluminescence in Photobacterium phosphoreum by sulfamethizole and its stimulation by thymine. Watanabe H; Hastings JW Biochim Biophys Acta; 1990 Jun; 1017(3):229-34. PubMed ID: 2372557 [TBL] [Abstract][Full Text] [Related]
9. Studies on luciferase from Photobacterium phosphoreum. VIII. FMN-H2O2 initiated bioluminescence and the thermodynamics of the elementary steps of the luciferase reaction. Watanabe T; Nakamura T J Biochem; 1976 Mar; 79(3):489-95. PubMed ID: 950335 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of aliphatic aldehydes for the bacterial bioluminescent reaction: stimulation by ATP and NADPH. Meighen EA Biochem Biophys Res Commun; 1979 Apr; 87(4):1080-6. PubMed ID: 223549 [No Abstract] [Full Text] [Related]
11. [Mechanism of action of 2,4-dinitrofluorobenzene on bacterial luminescence in vitro]. Kratasiuk VA; Fish AM Biokhimiia; 1980 Jul; 45(7):1175-81. PubMed ID: 7213855 [TBL] [Abstract][Full Text] [Related]
12. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Valkova N; Szittner R; Meighen EA Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227 [TBL] [Abstract][Full Text] [Related]
13. [Inhibitory analysis of the luminescent electron transport chain of Photobacterium fischeri]. Ismailov AD; Danilov VS; Malkov IuA; Egorov NS Biokhimiia; 1981 Jan; 46(1):40-6. PubMed ID: 7248374 [TBL] [Abstract][Full Text] [Related]
14. Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism. Meighen EA; Bartlet I J Biol Chem; 1980 Dec; 255(23):11181-7. PubMed ID: 6969259 [TBL] [Abstract][Full Text] [Related]
15. Interactions between aldehyde derivatives and the aldehyde binding site of bacterial luciferase. Jockers R; Ziegler T; Schmid RD J Biolumin Chemilumin; 1995; 10(1):21-7. PubMed ID: 7762412 [TBL] [Abstract][Full Text] [Related]
16. Vibrio harveyi aldehyde dehydrogenase. Partial reversal of aldehyde oxidation and its possible role in the reduction of fatty acids for the bioluminescence reaction. Byers D; Meighen E J Biol Chem; 1984 Jun; 259(11):7109-14. PubMed ID: 6725283 [TBL] [Abstract][Full Text] [Related]
17. Control of aldehyde synthesis in the luminous bacterium Beneckea harveyi. Ulitzur S; Hastings JW J Bacteriol; 1979 Feb; 137(2):854-9. PubMed ID: 311359 [TBL] [Abstract][Full Text] [Related]
18. Studies on luciferase from Photobacterium phosphoreum. XI. Interaction of 8-substituted FMNH2 with luciferase. Watanabe T; Matsui K; Kasai S; Nakamura T J Biochem; 1978 Dec; 84(6):1441-6. PubMed ID: 738995 [TBL] [Abstract][Full Text] [Related]
19. Interaction between luciferases from various species of bioluminescent bacteria and the yellow fluorescent protein of Vibrio fischeri strain Y-1. Daubner SC; Baldwin TO Biochem Biophys Res Commun; 1989 Jun; 161(3):1191-8. PubMed ID: 2742584 [TBL] [Abstract][Full Text] [Related]
20. Studies on luciferase from Photobacterium phosphoreum. X. Heat of formation of the intermediate in the bioluminescent reaction studied by stopped-flow calorimetry. Nakamura T J Biochem; 1978 Apr; 83(4):1077-83. PubMed ID: 659382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]