These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 573170)

  • 1. Relationship between carbon source and susceptibility of Cephalosporium acremonium to selected amino acid analogues.
    Mehta RJ; Nash CH
    Can J Microbiol; 1979 Jul; 25(7):818-21. PubMed ID: 573170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of antimetabolite sensitivity with different carbon sources in Bacillus subtilis.
    Chaudhuri A; Mishra AK; Nanda G
    Folia Microbiol (Praha); 1982; 27(2):73-5. PubMed ID: 6806159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homologous transformation of Cephalosporium acremonium with the nitrate reductase-encoding gene (niaD).
    Whitehead MP; Gurr SJ; Grieve C; Unkles SE; Spence D; Ramsden M; Kinghorn JR
    Gene; 1990 Jun; 90(2):193-8. PubMed ID: 2401400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thialysine-resistant mutant of Salmonella typhimurium with a lesion in the thrA gene.
    Jegede VA; Spencer F; Brenchley JE
    Genetics; 1976 Aug; 83(4):619-32. PubMed ID: 786777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of lysine on cephalosporin biosynthesis and morphogenesis in Acremonium chrysogenum].
    Bartoshevich IuE; Novak MI; Iudina OD; Dmitrieva SV; Pertsovskaia NV
    Antibiot Med Biotekhnol; 1987 Jan; 32(1):6-11. PubMed ID: 3105432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain improvement studies for cephalosporin C production by Cephalosporium acremonium.
    Ellaiah P; Adinarayana K; Chand GM; Subramanyam GS; Srinivasulu B
    Pharmazie; 2002 Jul; 57(7):489-90. PubMed ID: 12168534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the biosynthesis of the tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine in a beta-lactam-negative mutant of Cephalosporium acremonium.
    Adlington RM; Baldwin JE; Lopez-Nieto M; Murphy JA; Patel N
    Biochem J; 1983 Sep; 213(3):573-6. PubMed ID: 6684424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of cephalosporin synthesis in Cephalosporium acremonium by phosphate and glucose.
    Küenzi M
    Arch Microbiol; 1980 Nov; 128(1):78-83. PubMed ID: 7192969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations that affect antibiotic synthesis by Cephalosporium acremonium.
    Lemke PA; Nash CH
    Can J Microbiol; 1972 Feb; 18(2):255-9. PubMed ID: 4336241
    [No Abstract]   [Full Text] [Related]  

  • 10. Stimulation of cephalosporin C production in Acremonium chrysogenum M35 by glycerol.
    Shin HY; Lee JY; Jung YR; Kim SW
    Bioresour Technol; 2010 Jun; 101(12):4549-53. PubMed ID: 20171092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining an optimal carbon source/methionine feed strategy for growth and cephalosporin C formation by Cephalosporium acremonium.
    Vicik SM; Fedor AJ; Swartz RW
    Biotechnol Prog; 1990; 6(5):333-40. PubMed ID: 1366872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of growth and aspartokinase activity of Salmonella typhimurium by thialysine.
    Coles FT; Brenchley JE
    Biochim Biophys Acta; 1976 May; 428(3):647-55. PubMed ID: 179582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. INHIBITION OF INTESTINAL AMINO-ACID TRANSPORT BY SUGARS.
    SAUNDERS SJ; ISSELBACHER KJ
    Nature; 1965 Feb; 205():700-1. PubMed ID: 14287412
    [No Abstract]   [Full Text] [Related]  

  • 14. Occurrence of a new cephalosporoate in a culture broth of a Cephalosporium acremonium mutant.
    Fujisawa Y; Kanzaki T
    J Antibiot (Tokyo); 1975 May; 28(5):372-8. PubMed ID: 1172499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524.
    Mikkelsen D; Flanagan BM; Dykes GA; Gidley MJ
    J Appl Microbiol; 2009 Aug; 107(2):576-83. PubMed ID: 19302295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Cephalosporium acremonium pcbAB gene encoding alpha-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains.
    Gutiérrez S; Díez B; Montenegro E; Martín JF
    J Bacteriol; 1991 Apr; 173(7):2354-65. PubMed ID: 1706706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of alpha-aminoadipic acid for the biosynthesis of penicillin N and cephalosporin C by a Cephalosporium sp.
    Warren SC; Newton GG; Abraham EP
    Biochem J; 1967 Jun; 103(3):891-901. PubMed ID: 6069167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and biochemical properties of two strains of Cephalosporium chrysogenum.
    Pisano MA
    Antonie Van Leeuwenhoek; 1970; 36(3):445-54. PubMed ID: 5312518
    [No Abstract]   [Full Text] [Related]  

  • 19. Repression of beta-lactam production in Cephalosporium acremonium by nitrogen sources.
    Shen YQ; Heim J; Solomon NA; Wolfe S; Demain AL
    J Antibiot (Tokyo); 1984 May; 37(5):503-11. PubMed ID: 6539768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-free ring expansion of penicillin N to deacetoxycephalosporin C by Cephalosporium acremonium CW-19 and its mutants.
    Yoshida M; Konomi T; Kohsaka M; Baldwin JE; Herchen S; Singh P; Hunt NA; Demain AL
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):6253-7. PubMed ID: 282643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.