These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 5732508)

  • 1. Studies on microbial ribonucleic acid. VI. Appearance of methyl-deficient transfer ribonucleic acid during logarithmic growth of Saccharomyces cerevisiae.
    Kjellin-Stråby K; Phillips JH
    J Bacteriol; 1968 Sep; 96(3):760-7. PubMed ID: 5732508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl-deficient transfer ribonucleic acid in Saccharomyces cerevisiae.
    Phillips JH
    J Bacteriol; 1969 Nov; 100(2):695-700. PubMed ID: 5354941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl-deficient transfer ribonucleic acid and macromolecular synthesis in methionine-starved Saccharomyces cerevisiae.
    Kjellin-Stråby K; Phillips JH
    J Bacteriol; 1969 Nov; 100(2):679-86. PubMed ID: 5354939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of methionine pool composition on the formation of methyl-deficient transfer ribonucleic acid in Saccharomyces cerevisiae.
    Kjellin-Stråby K
    J Bacteriol; 1969 Nov; 100(2):687-94. PubMed ID: 5354940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of the methylation in vivo of ribosomal RNA in yeast.
    Retèl J; van den Bos RC; Planta RJ
    Biochim Biophys Acta; 1969 Dec; 195(2):370-80. PubMed ID: 5366926
    [No Abstract]   [Full Text] [Related]  

  • 6. Appearance of a new species of ribonucleic acid during sporulation in Saccharomyces cerevisiae.
    Kadowaki K; Halvorson HO
    J Bacteriol; 1971 Mar; 105(3):826-30. PubMed ID: 5547990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake and utilization of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in an adenine mutant of Saccharomyces cerevisiae.
    Knudsen RC; Moore K; Yall I
    J Bacteriol; 1969 May; 98(2):629-36. PubMed ID: 5784216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2.
    Cherest H; Surdin-Kerjan Y; Robichon-Szulmajster H
    J Bacteriol; 1971 Jun; 106(3):758-72. PubMed ID: 5557593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A study of the incorporation of 5-fluorouracil into transfer and ribosomal ribonucleic acids of yeast].
    Giege R; Heinrich J; Weil JH; Ebel JP
    Biochim Biophys Acta; 1969 Jan; 174(1):43-52. PubMed ID: 5766307
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis of ribonucleic acids during the germination of Rhizopus stolonifer sporangiospores.
    Roheim JR; Knight RH; van Etten JL
    Dev Biol; 1974 Nov; 41(1):137-45. PubMed ID: 4435301
    [No Abstract]   [Full Text] [Related]  

  • 11. Ribosomal precursor RNA in Saccharomyces carlsbergensis.
    Retèl J; Planta RJ
    Eur J Biochem; 1967 Dec; 3(2):248-58. PubMed ID: 6082612
    [No Abstract]   [Full Text] [Related]  

  • 12. The cytoplasmic maturation of a ribosomal precursor ribonucleic acid in yeast.
    Udem SA; Warner JR
    J Biol Chem; 1973 Feb; 248(4):1412-6. PubMed ID: 4568815
    [No Abstract]   [Full Text] [Related]  

  • 13. Macromolecular synthesis in Saccharomyces cerevisiae in different growth media.
    Wehr CT; Parks LW
    J Bacteriol; 1969 May; 98(2):458-66. PubMed ID: 5784205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cycloheximide and 5-fluorouracil on formation of low-molecular-weight ribonucleic acid in yeast.
    Hendricks DV; Andrean BA; De Kloet SR
    J Bacteriol; 1969 Feb; 97(2):743-8. PubMed ID: 5773027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on microbial ribonucleic acid. IV. Two mutants of Saccharomyces cerevisiae lacking N-2-dimethylguanine in soluble ribonucleic acid.
    Phillips JH; Kjellin-Stråby K
    J Mol Biol; 1967 Jun; 26(3):509-18. PubMed ID: 6029741
    [No Abstract]   [Full Text] [Related]  

  • 16. The methylation of transfer ribonucleic acid during regeneration of the liver.
    Tidwell T
    J Cell Biol; 1970 Aug; 46(2):370-8. PubMed ID: 5449182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between sporulation-specific 20S ribonucleic acid and ribosomal ribonucleic acid processing in Saccharomyces cerevisiae.
    Sogin SJ; Haber JE; Halvorson HO
    J Bacteriol; 1972 Nov; 112(2):806-14. PubMed ID: 4563977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methionine-dependent synthesis of ribosomal ribonucleic acid during sporulation and vegetative growth of Saccharomyces cerevisiae.
    Wejksnora PJ; Haber JE
    J Bacteriol; 1974 Dec; 120(3):1344-55. PubMed ID: 4612017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur-deficient transfer ribonucleic acid in a cysteine-requiring, "relaxed" mutant of Escherichia coli.
    Harris CL; Titchener EB; Cline AL
    J Bacteriol; 1969 Dec; 100(3):1322-7. PubMed ID: 4902813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of ribonucleic acid synthesis on continuous protein synthesis in yeast.
    Roth RM; Dampier C
    J Bacteriol; 1972 Feb; 109(2):773-9. PubMed ID: 4550820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.