These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 573289)

  • 1. Catecholamine depletion in mice upon reexposure to stress: mediation of the escape deficits produced by inescapable shock.
    Anisman H; Sklar LS
    J Comp Physiol Psychol; 1979 Aug; 93(4):610-25. PubMed ID: 573289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of norepinephrine and acetylcholine in mediating escape deficits produced by inescapable shocks.
    Kelsey JE
    Behav Neural Biol; 1983 Mar; 37(2):326-31. PubMed ID: 6684915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of inescapable shock and norepinephrine depletion induced by DSP4 on escape performance.
    Anisman H; Beauchamp C; Zacharko RM
    Psychopharmacology (Berl); 1984; 83(1):56-61. PubMed ID: 6429701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficits of escape performance following catecholamine depletion: implications for behavioral deficits induced by uncontrollable stress.
    Anisman H; Irwin J; Sklar LS
    Psychopharmacology (Berl); 1979 Aug; 64(2):163-70. PubMed ID: 115036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escape performance after inescapable shock in selectively bred lines of mice: response maintenance and catecholamine activity.
    Anisman H; Grimmer L; Irwin J; Remington G; Sklar LS
    J Comp Physiol Psychol; 1979 Apr; 93(2):229-41. PubMed ID: 457947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of inescapable shock on subsequent escape performance: catecholaminergic and cholinergic mediation of response initiation and maintenance.
    Anisman H; Remington G; Sklar LS
    Psychopharmacology (Berl); 1979 Mar; 61(2):107-24. PubMed ID: 108728
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of chronic exposure to stressors on avoidance-escape behavior and on brain norepinephrine.
    Weiss JM; Glazer HI; Pohorecky LA; Brick J; Miller NE
    Psychosom Med; 1975; 37(6):522-34. PubMed ID: 711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-stressor immunization against the behavioral deficits introduced by uncontrollable shock.
    Anisman H; Irwin J; Beauchamp C; Zacharko R
    Behav Neurosci; 1983 Jun; 97(3):452-61. PubMed ID: 6683562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic influences on escape deficits produced by uncontrollable stress.
    Anisman H; Glazier SJ; Sklar LS
    Psychopharmacology (Berl); 1981; 74(1):81-7. PubMed ID: 6791211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noradrenergic and dopaminergic interactions in escape behavior: analysis of uncontrollable stress effects.
    Anisman H; Ritch M; Sklar LS
    Psychopharmacology (Berl); 1981; 74(3):263-8. PubMed ID: 6791235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma Catecholamine and corticosterone as well as brain catecholamine changes during coping in rats exposed to stressful footshock.
    Swenson RM; Vogel WH
    Pharmacol Biochem Behav; 1983 May; 18(5):689-93. PubMed ID: 6682978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in brain norepinephrine metabolism and behavior induced by environmental stimuli previously paired with inescapable shock.
    Cassens G; Kuruc A; Roffman M; Orsulak PJ; Schildkraut JJ
    Behav Brain Res; 1981 May; 2(3):387-407. PubMed ID: 7225224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the amygdala and dorsal raphe nucleus in mediating the behavioral consequences of inescapable shock.
    Maier SF; Grahn RE; Kalman BA; Sutton LC; Wiertelak EP; Watkins LR
    Behav Neurosci; 1993 Apr; 107(2):377-88. PubMed ID: 8484901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity wheel running reduces escape latency and alters brain monoamine levels after footshock.
    Dishman RK; Renner KJ; Youngstedt SD; Reigle TG; Bunnell BN; Burke KA; Yoo HS; Mougey EH; Meyerhoff JL
    Brain Res Bull; 1997; 42(5):399-406. PubMed ID: 9092882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventromedial septal lesions in rats reduce the effects of inescapable shock on escape performance and analgesia.
    Kelsey JE; Baker MD
    Behav Neurosci; 1983 Dec; 97(6):945-61. PubMed ID: 6686055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of inescapable shock on escape performance and discrimination learning in a water escape task.
    Irwin J; Suissa A; Anisman H
    J Exp Psychol Anim Behav Process; 1980 Jan; 6(1):21-40. PubMed ID: 7373225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation of long-term analgesia and the shuttle box escape deficit caused by inescapable shock.
    MacLennan AJ; Drugan RC; Hyson RL; Maier SF; Madden J; Barchas JD
    J Comp Physiol Psychol; 1982 Dec; 96(6):904-12. PubMed ID: 7153387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of acute exposure to stressors on subsequent avoidance-escape behavior.
    Weiss JM; Glazer HI
    Psychosom Med; 1975; 37(6):499-521. PubMed ID: 1239037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Librium prevents the analgesia and shuttlebox escape deficit typically observed following inescapable shock.
    Drugan RC; Ryan SM; Minor TR; Maier SF
    Pharmacol Biochem Behav; 1984 Nov; 21(5):749-54. PubMed ID: 6542677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of catecholamine turnover rates in limbic and hypothalamic structures in relation to serum prolactin and gonadotropin levels.
    Höhn KG; Wuttke W
    Brain Res; 1979 Dec; 179(2):281-93. PubMed ID: 574418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.