These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 5734078)
1. [Effect of nalidixic acid on the utilization of glucose and on the protein synthesis of Proteus OX2 and of Staphylococcus aureus]. Lembo M; Rossano F; Miranda D Riv Ist Sieroter Ital; 1968; 43(6):304-7. PubMed ID: 5734078 [No Abstract] [Full Text] [Related]
2. [Detection of "Staphylococcus aureau" protein A on selective culture media (author's transl)]. Bornstein N; Tissot D; Flandrois JP; Fleurette J Ann Microbiol (Paris); 1980; 131(3):285-90. PubMed ID: 7425451 [TBL] [Abstract][Full Text] [Related]
3. [Induction of synthesis of extracellular DNAase from Proteus mirabilis under the effect of compounds, blocking DNA replication]. Iusupova DV; Sanzhmiatavyn E; Sokolova RB; Petukhova EV Mol Gen Mikrobiol Virusol; 1993; (3):36-9. PubMed ID: 8350881 [TBL] [Abstract][Full Text] [Related]
4. [Substrates of endogenous metabolism in Staphylococcus aureus]. Krzemiński Z; Mikucki J; Szarapińska-Kwaszewska J Med Dosw Mikrobiol; 1969; 21(1):1-8. PubMed ID: 5789981 [No Abstract] [Full Text] [Related]
5. Microcalorimetry studies of energy changes during the growth of Klebsiella aerogenes in simple salts/glucose media: inhibition by nalidixic acid. Bowden CP; James AM Microbios; 1985; 44(179-180):201-16. PubMed ID: 3938832 [TBL] [Abstract][Full Text] [Related]
6. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization. Jankovic I; Brückner R J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218 [TBL] [Abstract][Full Text] [Related]
7. The effect of nalidixic acid on growth and petite formation in Saccharomyces cerevisiae. Gross VJ; Smith DG Microbios; 1972; 6(22):139-46. PubMed ID: 4571000 [No Abstract] [Full Text] [Related]
8. The gate controlling cell wall synthesis in Staphylococcus aureus. Komatsuzawa H; Fujiwara T; Nishi H; Yamada S; Ohara M; McCallum N; Berger-Bächi B; Sugai M Mol Microbiol; 2004 Aug; 53(4):1221-31. PubMed ID: 15306023 [TBL] [Abstract][Full Text] [Related]
9. Effect of nalidixic acid on the conversion of Staphylococcus aureus cells to L-forms in a liquid medium with 6-aminopenicillanic acid and lysozyme. Yabu K Microbiol Immunol; 1986; 30(8):811-8. PubMed ID: 3023798 [No Abstract] [Full Text] [Related]
10. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Grover G; Kini SG Eur J Med Chem; 2006 Feb; 41(2):256-62. PubMed ID: 16260068 [TBL] [Abstract][Full Text] [Related]
11. The effect of unbalanced cell wall synthesis on the protoplast formation in cells of Staphylococcus aureus "Oxford". Tynecka Z Ann Univ Mariae Curie Sklodowska Med; 1969; 24():13-20. PubMed ID: 5406023 [No Abstract] [Full Text] [Related]
12. [Antagonism of nalidixic acid and nitrofurans against Proteus-Providence group]. Kanazawa Y; Kuramata T Nihon Saikingaku Zasshi; 1966 Apr; 21(4):210-6. PubMed ID: 6005861 [No Abstract] [Full Text] [Related]
13. Studies on the action of nalidixic acid in the yeast Saccharomyces cerevisiae. Michaels CA; Blamire J; Goldfinger B; Marmur J Antimicrob Agents Chemother; 1973 May; 3(5):562-7. PubMed ID: 4597731 [TBL] [Abstract][Full Text] [Related]
14. Interaction of nalidixic acid with Klebsiella (Aerobacter) aerogenes growing in continuous culture. Dean AC; Moss DA Chem Biol Interact; 1970 Dec; 2(4):281-96. PubMed ID: 5002637 [No Abstract] [Full Text] [Related]
15. Effect of putative deoxyribonucleic acid inhibitors on macromolecular synthesis in Saccharomyces cerevisiae. Wehr CT; Kudrna RD; Parks LW J Bacteriol; 1970 Jun; 102(3):636-41. PubMed ID: 4246878 [TBL] [Abstract][Full Text] [Related]
16. Proteolysis during long-term glucose starvation in Staphylococcus aureus COL. Michalik S; Liebeke M; Zühlke D; Lalk M; Bernhardt J; Gerth U; Hecker M Proteomics; 2009 Oct; 9(19):4468-77. PubMed ID: 19743422 [TBL] [Abstract][Full Text] [Related]
17. Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus. Jankovic I; Brückner R J Mol Microbiol Biotechnol; 2002 May; 4(3):309-14. PubMed ID: 11931563 [TBL] [Abstract][Full Text] [Related]
18. Staphylococcus pseudintermedius expresses surface proteins that closely resemble those from Staphylococcus aureus. Geoghegan JA; Smith EJ; Speziale P; Foster TJ Vet Microbiol; 2009 Sep; 138(3-4):345-52. PubMed ID: 19372010 [TBL] [Abstract][Full Text] [Related]
19. [Correlation between the rate of protein and nucleic acid synthesis and the intensity of various glucose metabolic pathways in rat liver cells]. Boĭkov PIa; Shevchenko NA; Mitrofanova MA; Zin'ko NV; Lobanova AM Biokhimiia; 1984 Feb; 49(2):285-91. PubMed ID: 6201197 [TBL] [Abstract][Full Text] [Related]
20. Effect of nalidixic acid on recombination and DNA repair of Escherichia coli K-12 strains. Inan S; Kalaycioglu A Indian J Exp Biol; 1996 Oct; 34(10):949-53. PubMed ID: 9055644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]