These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 574750)

  • 1. Microbial transformations of natural antitumor agents: conversion of lapachol to dehydro-alpha-lapachone by Curvularia lunata.
    Otten S; Rosazza JP
    Appl Environ Microbiol; 1979 Aug; 38(2):311-3. PubMed ID: 574750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial transformations of natural antitumor agents: oxidation of lapachol by Penicillium notatum.
    Otten S; Rosazza JP
    Appl Environ Microbiol; 1978 Mar; 35(3):554-7. PubMed ID: 637549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxicity of lapachol metabolites produced by probiotics.
    Oliveira Silva E; Cruz de Carvalho T; Parshikov IA; Alves dos Santos R; Silva Emery F; Jacometti Cardoso Furtado NA
    Lett Appl Microbiol; 2014 Jul; 59(1):108-14. PubMed ID: 24635204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative ring fission of the naphthoquinones lapachol and dichloroallyl lawsone by Penicillium notatum.
    Otten SL; Rosazza JP
    J Biol Chem; 1983 Feb; 258(3):1610-3. PubMed ID: 6822525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal and Cytotoxic Assessment of Lapachol Derivatives Produced by Fungal Biotransformation.
    Silva EO; Ruano-González A; dos Santos RA; Sánchez-Maestre R; Furtado NA; Collado IG; Aleu J
    Nat Prod Commun; 2016 Jan; 11(1):95-8. PubMed ID: 26996030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lapachol biotransformation by filamentous fungi yields bioactive quinone derivatives and lapachol-stimulated secondary metabolites.
    Barbosa Coitinho L; Fumagalli F; da Rosa-Garzon NG; da Silva Emery F; Cabral H
    Prep Biochem Biotechnol; 2019; 49(5):459-463. PubMed ID: 30896339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial hydroxylation of 13-ethyl-17 beta-hydroxy-18,19-dinor-17 alpha-pregn-4-en-20-yn-3-one.
    Hu SH; Tian XF; Sun YH; Han GD
    Steroids; 1996 Jul; 61(7):407-10. PubMed ID: 8837292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial transformations of natural antitumor agents. 7. 14-alpha-Hydroxylation of withaferin-A by Cunninghamella elegans (NRRL 1393).
    Rosazza JP; Nicholas AW; Gustafson ME
    Steroids; 1978 May; 31(5):671-9. PubMed ID: 675739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted rapid cyclization of lapachol, a main constituent of Heterophragma adenophyllum.
    Singh P; Natani K; Jain S; Arya K; Dandia A
    Nat Prod Res; 2006 Feb; 20(2):207-12. PubMed ID: 16496478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Preparation of 6-alpha-fluoro-11-beta, 21-dihydroxy-16-alpha-methyl-1,4-pregnadiene-3, 20-dione (fluocortolone) via substrate-structure-directed specific 11-beta-hydroxylation by Curvularia lunata].
    Kieslich K; Petzoldt K; Kosmol H; Koch W
    Justus Liebigs Ann Chem; 1969; 726():168-76. PubMed ID: 5816548
    [No Abstract]   [Full Text] [Related]  

  • 11. Microbial transformations of p-coumaric acid by Bacillus megaterium and Curvularia lunata.
    Torres Y Torres JL; Rosazza JP
    J Nat Prod; 2001 Nov; 64(11):1408-14. PubMed ID: 11720522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial hydroxylations. IV. Differential metabolism of 19-nor steroid antipodes by Curvularia lunata.
    Lin YY; Shibahara M; Smith LL
    J Org Chem; 1969 Nov; 34(11):3530-9. PubMed ID: 5388544
    [No Abstract]   [Full Text] [Related]  

  • 13. Biotransformation of cedrol by Curvularia lunata ATCC 12017.
    Collins DO; Reese PB
    Phytochemistry; 2001 Mar; 56(5):417-21. PubMed ID: 11261573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of β-Lapachone Cytotoxicity by Filamentous Fungi that Mimic the Human Blood Metabolism.
    Paludo CR; da Silva-Junior EA; de Oliveira Silva E; Vessecchi R; Peporine Lopes N; Tallarico Pupo M; da Silva Emery F; Dos Santos Gonçalves N; Alves Dos Santos R; Jacometti Cardoso Furtado NA
    Eur J Drug Metab Pharmacokinet; 2017 Apr; 42(2):213-220. PubMed ID: 27059844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiologic transformation of progesterone by Curvularia clavata Jain.
    Vujcić M; Jankov RM
    Steroids; 1990 Jan; 55(1):17-21. PubMed ID: 2309253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial transformations of natural antitumor agents. 3. Conversion of thalicarpine to (+)-hernandalinol by Streptomyces punipalus.
    Nabih T; Davis PJ; Caputo JF; Rosazza JP
    J Med Chem; 1977 Jul; 20(7):914-7. PubMed ID: 141523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial transformations of natural antitumor agents XXII: Conversion of bouvardin to O-desmethylbouvardin and bouvardin catechol.
    Petroski RJ; Bates RB; Linz GS; Rosazza JP
    J Pharm Sci; 1983 Nov; 72(11):1291-4. PubMed ID: 6644590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotransformations of 20-hydroxyecdysone and analogues by Curvularia lunata NRRL 2178.
    Changtam C; Sukcharoen O; Yingyongnarongkul BE; Suksamrarn A
    Steroids; 2006 Oct; 71(10):902-7. PubMed ID: 16846623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial transformations of natural antitumor agents. 23. Conversion of withaferin-A to 12 beta- and 15 beta-hydroxy derivatives of withaferin-A.
    Fuska J; Prousek J; Rosazza J; Budesinsky M
    Steroids; 1982 Aug; 40(2):157-69. PubMed ID: 7157453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of rifamycin B with growing and resting cells of Curvularia lunata.
    Banerjee UC
    Enzyme Microb Technol; 1993 Dec; 15(12):1037-41. PubMed ID: 7764294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.