These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 574774)

  • 1. Conformational analysis by nuclear magnetic resonance: insulin.
    Williamson KL; Williams RJ
    Biochemistry; 1979 Dec; 18(26):5966-72. PubMed ID: 574774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H n.m.r. studies of insulin. Reversible transformation of 2-zinc to 4-zinc insulin hexamer.
    Ramesh V; Bradbury JH
    Int J Pept Protein Res; 1986 Aug; 28(2):146-53. PubMed ID: 3533813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1H Fourier transform NMR studies of insulin: coordination of Ca2+ to the Glu(B13) site drives hexamer assembly and induces a conformation change.
    Palmieri R; Lee RW; Dunn MF
    Biochemistry; 1988 May; 27(9):3387-97. PubMed ID: 2898949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural signatures of the complex formed between 3-nitro-4-hydroxybenzoate and the Zn(II)-substituted R(6) insulin hexamer.
    Olsen HB; Leuenberger-Fisher MR; Kadima W; Borchardt D; Kaarsholm NC; Dunn MF
    Protein Sci; 2003 Sep; 12(9):1902-13. PubMed ID: 12930990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural asymmetry and half-site reactivity in the T to R allosteric transition of the insulin hexamer.
    Brzović PS; Choi WE; Borchardt D; Kaarsholm NC; Dunn MF
    Biochemistry; 1994 Nov; 33(44):13057-69. PubMed ID: 7947711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium-113 nuclear magnetic resonance studies of bovine insulin: two-zinc insulin hexamer specifically binds calcium.
    Sudmeier JL; Bell SJ; Storm MC; Dunn MF
    Science; 1981 May; 212(4494):560-2. PubMed ID: 7010607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic signatures of the T to R conformational transition in the insulin hexamer.
    Roy M; Brader ML; Lee RW; Kaarsholm NC; Hansen JF; Dunn MF
    J Biol Chem; 1989 Nov; 264(32):19081-5. PubMed ID: 2681208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear-magnetic-resonance-spectroscopic studies of the amino groups of insulin.
    Bradbury JH; Brown LR
    Eur J Biochem; 1977 Jun; 76(2):573-82. PubMed ID: 19247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of metal ions in the T- to R-allosteric transition in the insulin hexamer.
    Kadima W
    Biochemistry; 1999 Oct; 38(41):13443-52. PubMed ID: 10521251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer.
    Hill CP; Dauter Z; Dodson EJ; Dodson GG; Dunn MF
    Biochemistry; 1991 Jan; 30(4):917-24. PubMed ID: 1671209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the R-state insulin hexamer and its derivatives. The hexamer is stabilized by heterotropic ligand binding interactions.
    Brader ML; Kaarsholm NC; Lee RW; Dunn MF
    Biochemistry; 1991 Jul; 30(27):6636-45. PubMed ID: 2065051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc-ligand interactions modulate assembly and stability of the insulin hexamer -- a review.
    Dunn MF
    Biometals; 2005 Aug; 18(4):295-303. PubMed ID: 16158220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A solution equivalent of the 2Zn----4Zn transformation of insulin in the crystal.
    Renscheidt H; Strassburger W; Glatter U; Wollmer A; Dodson GG; Mercola DA
    Eur J Biochem; 1984 Jul; 142(1):7-14. PubMed ID: 6378635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of calcium ion on ternary complexes formed between 4-(2-pyridylazo)resorcinol and the two-zinc insulin hexamer.
    Kaarsholm NC; Dunn MF
    Biochemistry; 1987 Feb; 26(3):883-90. PubMed ID: 3552036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C-13 NMR spectral studies of the thyroid hormone transport protein, transthyretin and the pancreatic insulin storage moiety, the zinc-insulin hexamer.
    Craik DJ; Hall JG; Higgins KA
    Biochem Biophys Res Commun; 1987 Feb; 143(1):116-25. PubMed ID: 3548723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural transition in the metal-free hexamer of protein-engineered [B13 Gln]insulin.
    Wollmer A; Rannefeld B; Stahl J; Melberg SG
    Biol Chem Hoppe Seyler; 1989 Sep; 370(9):1045-53. PubMed ID: 2692616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions.
    Rahuel-Clermont S; French CA; Kaarsholm NC; Dunn MF; Chou CI
    Biochemistry; 1997 May; 36(19):5837-45. PubMed ID: 9153424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. II. pH and inhibitor-induced conformational transitions affecting histidine-48 and one tyrosine residue of ribonuclease A.
    Markley JL
    Biochemistry; 1975 Aug; 14(16):554-61. PubMed ID: 240391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural stability in the 4-zinc human insulin hexamer.
    Smith GD; Swenson DC; Dodson EJ; Dodson GG; Reynolds CD
    Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7093-7. PubMed ID: 6390430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase changes in T(3)R(3)(f) human insulin: temperature or pressure induced?
    Smith GD; Pangborn WA; Blessing RH
    Acta Crystallogr D Biol Crystallogr; 2001 Aug; 57(Pt 8):1091-100. PubMed ID: 11468392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.