These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 5748885)
1. Estimation of pathways of glucose catabolism in Rhodotorula gracilis. Höfer M Folia Microbiol (Praha); 1968; 13(5):373-8. PubMed ID: 5748885 [No Abstract] [Full Text] [Related]
2. Importance of the pentose phosphate pathway for D-glucose catabolism in the obligatory aerobic yeast Rhodotorula gracilis. Höfer M; Brand K; Deckner K; Becker JU Biochem J; 1971 Aug; 123(5):855-63. PubMed ID: 4399401 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of the obligatory aerobic yeast Rhodotorula gracilis. IV. Induction of an enzyme necessary for D-xylose catabolism. Höfer M; Betz A; Kotyk A Biochim Biophys Acta; 1971 Oct; 252(1):1-12. PubMed ID: 5168931 [No Abstract] [Full Text] [Related]
4. [Regulation of monosaccharide and carboxylic acid metabolism in Rhodotorula gracilis]. Höfer M; Becker JU Zentralbl Bakteriol Orig A; 1972 May; 220(1):374-9. PubMed ID: 4145603 [No Abstract] [Full Text] [Related]
5. Oxidative assimilation and endogenous respiration of Rhodotorula graminis. Clifton CE Proc Soc Exp Biol Med; 1969 Mar; 130(3):957-60. PubMed ID: 5813058 [No Abstract] [Full Text] [Related]
6. Oxygen demand by lipid-accumulating yeasts in continuous culture. Ratledge C; Hall MJ Appl Environ Microbiol; 1977 Aug; 34(2):230-1. PubMed ID: 562130 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of the obligatory aerobic yeast Rhodotorula gracilis. I. Changes in metabolite concentrations following D-glucose and D-xylose addition to the cell suspension. Höfer M; Betz A; Becker JU Arch Mikrobiol; 1970; 71(2):99-110. PubMed ID: 4392696 [No Abstract] [Full Text] [Related]
8. Utilization of amino acids by Rhodotorula glutinis. Saiyid NH; Kotyk A Folia Microbiol (Praha); 1971; 16(5):387-8. PubMed ID: 5166452 [No Abstract] [Full Text] [Related]
9. [Fermentation and respiratory heat in anerobic and aerobic multiplication of yeasts]. Ohlmeyer P; Fritz U Z Naturforsch B; 1966 Feb; 21(2):175-80. PubMed ID: 4383181 [No Abstract] [Full Text] [Related]
10. Carbohydrate metabolism during differentiation (sclerotization) of the myxomycete Physarum flavicomum. Lynch TJ; Henney HR Arch Mikrobiol; 1973; 90(3):189-98. PubMed ID: 4350874 [No Abstract] [Full Text] [Related]
11. Relationship of active membrane transport and respiration in Rhodotorula glutinis: possibility of two respiratory systems. Janda S Cell Mol Biol Incl Cyto Enzymol; 1979; 25(2):131-6. PubMed ID: 575314 [No Abstract] [Full Text] [Related]
12. Metabolism of 14C-chlorobenzilate and 14C-chloropropylate by Rhodotorula gracilis. Miyazaki S; Boush GM; Matsumura F Appl Microbiol; 1969 Dec; 18(6):972-6. PubMed ID: 5392608 [TBL] [Abstract][Full Text] [Related]
13. Dimorphism in Cladosporium werneckii. Houston MR; Meyer KH; Thomas N; Wolf FT Sabouraudia; 1969 Oct; 7(3):195-8. PubMed ID: 5394060 [No Abstract] [Full Text] [Related]
14. Tight coupling of monosaccharide transport and metabolism in Rhodotorula gracilis. Höfer M; Kotyk A Folia Microbiol (Praha); 1968; 13(3):197-204. PubMed ID: 5691581 [No Abstract] [Full Text] [Related]
15. On the activity of carbon dioxide fixation in growing yeasts. Divjak S; Mor JR Arch Mikrobiol; 1973 Dec; 94(3):191-9. PubMed ID: 4592723 [No Abstract] [Full Text] [Related]
16. The Custers effect (negative Pasteur effect) as a diagnostic criterion for the genus Brettanomyces. Scheffers WA; Wikén TO Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:A31-2. PubMed ID: 5311934 [No Abstract] [Full Text] [Related]
17. Catabolic pathways for glucose in the cichlid fish, Cichlasoma bimaculatum. Liu DH; Krueger H; Wang C Comp Biochem Physiol; 1970 Sep; 36(1):173-81. PubMed ID: 5511558 [No Abstract] [Full Text] [Related]
18. Contribution of the pentose cycle to glucose metabolism by insects. Chefurka W; Horie Y; Robinson JR Comp Biochem Physiol; 1970 Nov; 37(2):143-65. PubMed ID: 5484076 [No Abstract] [Full Text] [Related]
19. [Significance and regulation of the pentosephosphate pathway in human erythrocytes. I. Experiments with normal erythrocytes]. Brand K; Arese P; Rivera M Hoppe Seylers Z Physiol Chem; 1970 Apr; 351(4):501-8. PubMed ID: 4392678 [No Abstract] [Full Text] [Related]