These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 575197)

  • 1. Na-dependent Li-transport in primary nerve cell cultures.
    Szentistványi I; Janka Z; Joó F; Rimanóczy A; Juhász A; Latzkovits L
    Neurosci Lett; 1979 Jul; 13(2):157-61. PubMed ID: 575197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium transport pathways in human red blood cells.
    Pandey GN; Sarkadi B; Haas M; Gunn RB; Davis JM; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):233-47. PubMed ID: 690597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal lithium and sodium transport in erythrocytes of a manic patient and some members of his family.
    Pandey GN; Ostrow DG; Haas M; Dorus E; Casper RC; Davis JM; Tosteson DC
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3607-11. PubMed ID: 269417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of external sodium and potassium on lithium uptake by primary brain cell cultures at "therapeutic" lithium concentration.
    Janka Z; Szentistvanyi I; Rimanoczy A; Juhasz A
    Psychopharmacology (Berl); 1980; 71(2):159-63. PubMed ID: 6777816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport pathways for lithium ions in neuroblastoma x glioma hybrid cells at 'therapeutic' concentrations of Li+.
    Reiser G; Duhm J
    Brain Res; 1982 Dec; 252(2):247-58. PubMed ID: 7150952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and stoichiometry of Na-dependent Li transport in human red blood cells.
    Sarkadi B; Alifimoff JK; Gunn RB; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):249-65. PubMed ID: 690598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the lithium transport across the red cell membrane. III. Factors contributing to the intraindividual variability of the in vitro Li+ distribution across the human red cell membrane.
    Duhm J; Becker BF
    Pflugers Arch; 1977 Apr; 368(3):203-8. PubMed ID: 559291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Li/Na exchange and Li active transport in human lymphoid cells U937 cultured in lithium media].
    Iurinskaia VE; Moshkov AV; Goriachaia TS; Vereninov AA
    Tsitologiia; 2013; 55(10):703-12. PubMed ID: 25509124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport pathways for therapeutic concentrations of lithium in rat liver.
    Shahabi V; van Rossum GD
    J Membr Biol; 1999 Nov; 172(2):101-11. PubMed ID: 10556358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular sodium concentration and transport in red cells in essential hypertension, hyperthyroidism, pregnancy and hypokalemia.
    Gless KH; Sütterlin U; Schaz K; Schütz V; Hunstein W
    Clin Physiol Biochem; 1986; 4(3):199-209. PubMed ID: 3011343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independence of dimethylamiloride-sensitive Li+ efflux pathways and Na+-Li+ countertransport in human erythrocytes.
    Zerbini G; Mangili R; Pozza G
    Biochim Biophys Acta; 1998 Apr; 1371(1):129-33. PubMed ID: 9565666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of inhibitin with the human erythrocyte Na+(Li+)i/Nao+ exchanger.
    Morgan K; Spurlock G; Collins PA; Mir MA
    Biochim Biophys Acta; 1989 Feb; 979(1):53-61. PubMed ID: 2917166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium transport by fibroblastic mouse cells: characterization and stimulation by serum and growth factors in quiescent cultures.
    Smith JB; Rozengurt E
    J Cell Physiol; 1978 Dec; 97(3 Pt 2 Suppl 1):441-9. PubMed ID: 730779
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparison of net fluxes of Li and Na in vascular smooth muscle.
    Friedman SM
    Blood Vessels; 1975; 12(4):219-35. PubMed ID: 1174712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of lithium and sodium transports in primary cultures of dissociated brain cells.
    Szentistványi I; Janka Z; Rimanóczy A; Latzkovits L; Juhász A
    Cell Mol Biol Incl Cyto Enzymol; 1979; 25(5):315-21. PubMed ID: 535007
    [No Abstract]   [Full Text] [Related]  

  • 16. The interaction of lithium ions with the sodium-potassium pump in frog skeletal muscle.
    Beaugé L
    J Physiol; 1975 Mar; 246(2):397-420. PubMed ID: 1079873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modes of operation of an electroneutral Na+/Li+ countertransport in human skin fibroblasts.
    Zerbini G; Mangili R; Gabellini D; Pozza G
    Am J Physiol; 1997 Apr; 272(4 Pt 1):C1373-9. PubMed ID: 9142864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of lithium and sodium on the potassium conductance of snail neurones.
    Partridge LD; Thomas RC
    J Physiol; 1976 Jan; 254(3):551-63. PubMed ID: 1255500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical significance of sodium-dependent lithium transport in affective psychoses.
    Szentistványi I; Janka Z; Szilárd J
    Psychiatr Clin (Basel); 1980; 13(1):57-64. PubMed ID: 7394201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.