These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 5755)

  • 1. Early changes in myocardial hypoxia: relations among mechanical function, pH, and intracellular redox states.
    Scheuer J; Lai F
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():237-41. PubMed ID: 5755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early changes in myocardial hypoxia: relations between mechanical function, pH and intracellular compartmental metabolites.
    Lai F; Scheuer J
    J Mol Cell Cardiol; 1975 Apr; 7(4):289-303. PubMed ID: 236392
    [No Abstract]   [Full Text] [Related]  

  • 3. Control of energy production in cardiac muscle: effects of ischemia in acidosis.
    Williamson JR; Steenbergen C; Deleeuw G; Barlow C
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():521-31. PubMed ID: 22905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox state of free nicotinamide-adenine nucleotides in the cytoplasm and mitochondria of alveolar macrophages.
    Mintz S; Robin ED
    J Clin Invest; 1971 Jun; 50(6):1181-6. PubMed ID: 4325308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH fluorescence of isolated ventricular myocytes: effects of pacing, myoglobin, and oxygen supply.
    White RL; Wittenberg BA
    Biophys J; 1993 Jul; 65(1):196-204. PubMed ID: 8369428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH changes during hypoxia, ischemia, and increased work differ between isolated heart preparations.
    Wengrowski AM; Kuzmiak-Glancy S; Jaimes R; Kay MW
    Am J Physiol Heart Circ Physiol; 2014 Feb; 306(4):H529-37. PubMed ID: 24337462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.
    Williamson DH; Lund P; Krebs HA
    Biochem J; 1967 May; 103(2):514-27. PubMed ID: 4291787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-linked adjustment of myocardial metabolism to changing mechanical demands in the isolated rat heart.
    Rubányi G; Kovách AG
    Acta Physiol Acad Sci Hung; 1980; 55(4):335-43. PubMed ID: 7468250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Oxidative metabolism and myocardial function in rats with different sensitivities to oxygen deficiency in hypoxia].
    Korneev AA; Popova OA; Luk'ianova LD
    Patol Fiziol Eksp Ter; 1990; (3):28-30. PubMed ID: 2399034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial function in normal and hypoxic states of the myocardium.
    Williamson JR; Rich TL
    Adv Myocardiol; 1983; 4():271-85. PubMed ID: 6304829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH content and lactate production in the perfused rabbit heart.
    Katz A; Edlund A; Sahlin K
    Acta Physiol Scand; 1987 Jun; 130(2):193-200. PubMed ID: 3604709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of tissue acidosis to ischemic injury in the perfused rat heart.
    Williamson JR; Schaffer SW; Ford C; Safer B
    Circulation; 1976 Mar; 53(3 Suppl):I3-14. PubMed ID: 3293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiparameter monitoring and analysis of in vivo ischemic and hypoxic heart.
    Osbakken M; Mayevsky A
    J Basic Clin Physiol Pharmacol; 1996; 7(2):97-113. PubMed ID: 8876429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of intracellular oxygen concentration on lactate release, pyridine nucleotide reduction, and respiration rate in the rat cardiac tissue.
    Araki R; Tamura M; Yamazaki I
    Circ Res; 1983 Oct; 53(4):448-55. PubMed ID: 6627604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-independent inhibition of myocardial contraction by coronary effluent of hypoxic rat hearts.
    Yang ZK; Draper NJ; Shah AM
    Am J Physiol; 1999 Feb; 276(2):H623-32. PubMed ID: 9950864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 8-Bromo cyclic GMP inhibits NADH and lactate accumulation in hypoxic rat atria.
    Laustiola K; Vuorinen P; Karp M; Vapaatalo H; Metsä-Ketelä T
    Naunyn Schmiedebergs Arch Pharmacol; 1983 Aug; 323(4):361-3. PubMed ID: 6314154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart.
    Matthews PM; Taylor DJ; Radda GK
    Cardiovasc Res; 1986 Jan; 20(1):13-9. PubMed ID: 3708637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial contractile function during postischemic low-flow reperfusion: critical thresholds of NADH and O2 delivery.
    Stoner JD; Angelos MG; Clanton TL
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H375-80. PubMed ID: 12958032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.