These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 5755)

  • 41. Protective effect of gap junction uncouplers given during hypoxia against reoxygenation injury in isolated rat hearts.
    Rodríguez-Sinovas A; García-Dorado D; Ruiz-Meana M; Soler-Soler J
    Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H648-56. PubMed ID: 16183732
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of redox potential on protein degradation in perfused rat heart.
    Chua BH; Kleinhans BJ
    Am J Physiol; 1985 Jun; 248(6 Pt 1):E726-31. PubMed ID: 3890558
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic modulation of cellular redox potential can improve cardiac recovery from ischemia-reperfusion injury.
    Park JW; Chun YS; Kim MS; Park YC; Kwak SJ; Park SC
    Int J Cardiol; 1998 Jul; 65(2):139-47. PubMed ID: 9706808
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energy metabolism and NAD-NADH redox state in brain slices in response to glutamate exposure and ischemia.
    Kannurpatti SS; Joshi NB
    Metab Brain Dis; 1999 Mar; 14(1):33-43. PubMed ID: 10348312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Measurement of NADH fluorescence for determining the effectiveness of mechanical energy liberation in the hypoxic myocardium].
    Pfeiffer C; Schidlowski WA; Schubert E; Wodolasski VL
    Acta Biol Med Ger; 1971; 26(6):1209-13. PubMed ID: 4340893
    [No Abstract]   [Full Text] [Related]  

  • 46. Metabolic changes during ischaemia and their role in contractile failure in isolated ferret hearts.
    Elliott AC; Smith GL; Eisner DA; Allen DG
    J Physiol; 1992 Aug; 454():467-90. PubMed ID: 1474498
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acidosis and contractility of heart muscle.
    Poole-Wilson PA
    Ciba Found Symp; 1982; 87():58-76. PubMed ID: 6804193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics.
    Calmettes G; Deschodt-Arsac V; Gouspillou G; Miraux S; Muller B; Franconi JM; Thiaudiere E; Diolez P
    PLoS One; 2010 Feb; 5(2):e9306. PubMed ID: 20174637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction between tissue oxygen tension and NADH imaging during synaptic stimulation and hypoxia in rat hippocampal slices.
    Foster KA; Beaver CJ; Turner DA
    Neuroscience; 2005; 132(3):645-57. PubMed ID: 15837126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The calculation of the mitochondrial free [NAD+]/[NADH][H+] ratio in brain: effect of electroconvulsive seizure.
    Merrill DK; Guynn RW
    Brain Res; 1982 May; 239(1):71-80. PubMed ID: 7093692
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose.
    Bhatt NM; Aon MA; Tocchetti CG; Shen X; Dey S; Ramirez-Correa G; O'Rourke B; Gao WD; Cortassa S
    Am J Physiol Heart Circ Physiol; 2015 Feb; 308(4):H291-302. PubMed ID: 25485897
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modulating hypoxia-induced hepatocyte injury by affecting intracellular redox state.
    Khan S; O'Brien PJ
    Biochim Biophys Acta; 1995 Nov; 1269(2):153-61. PubMed ID: 7488648
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dichloroacetate enhanced myocardial functional recovery post-ischemia : ATP and NADH recovery.
    Wahr JA; Olszanski D; Childs KF; Bolling SF
    J Surg Res; 1996 Jun; 63(1):220-4. PubMed ID: 8661201
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of orotic acid treatment on the energy and carbohydrate metabolism of the hypertrophying rat heart.
    Donohoe JA; Rosenfeldt FL; Munsch CM; Williams JF
    Int J Biochem; 1993 Feb; 25(2):163-82. PubMed ID: 8444313
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensitivity of flavoprotein fluorescence to oxidative state in single isolated heart cells.
    Koke JR; Wylie W; Wills M
    Cytobios; 1981; 32(127-128):139-45. PubMed ID: 7347273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure-overload left ventricular hypertrophy in the rat: role of high-energy phosphate depletion.
    Wexler LF; Lorell BH; Momomura S; Weinberg EO; Ingwall JS; Apstein CS
    Circ Res; 1988 Apr; 62(4):766-75. PubMed ID: 2964946
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tolerance of the developing cyanotic heart to ischemia-reperfusion injury in the rat.
    Fujii Y; Ishino K; Tomii T; Kanamitsu H; Mitsui H; Sano S
    Gen Thorac Cardiovasc Surg; 2010 Apr; 58(4):174-81. PubMed ID: 20401710
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Histoxic hypoxia as one of the causes of ventricular fibrillation and decreased myocardial contractility].
    Pevzner IIa; Gorshkova TV; Eppel' MM
    Kardiologiia; 1975 Jul; 15(7):88-93. PubMed ID: 1206847
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A fluorometric study of oxidative metabolism in the in vivo canine heart during acute ischemia and hypoxia.
    Mills SA; Jöbsis FF; Seaber AV
    Ann Surg; 1977 Aug; 186(2):193-200. PubMed ID: 889364
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relative roles of intracellular Ca2+ and pH in shaping myocardial contractile response to acute respiratory alkalosis.
    Kusuoka H; Backx PH; Camilion de Hurtado M; Azan-Backx M; Marban E; Cingolani HE
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1696-703. PubMed ID: 8238582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.