These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 576111)
1. Studies of the mycoparasitism in rhizosphere of emerging sugar-beet. Veselý D Zentralbl Bakteriol Naturwiss; 1978; 133(3):195-200. PubMed ID: 576111 [TBL] [Abstract][Full Text] [Related]
2. Parasitic relationships between Pythium oligandrum Drechsler and some other species of the Oomycetes class. Veselý D Zentralbl Bakteriol Naturwiss; 1978; 133(4):341-9. PubMed ID: 726706 [TBL] [Abstract][Full Text] [Related]
3. Relation of Pythium oligandrum Drechsler to bacteria, Actinomyces, and several fungi inhabiting the rhizosphere of the emerging sugar-beet. Veselý D Zentralbl Bakteriol Naturwiss; 1978; 133(4):350-6. PubMed ID: 726707 [No Abstract] [Full Text] [Related]
4. Biological protection of emerging sugar-beet against damping-off established by mycoparasitism in non-sterilized soil. Veselý D Zentralbl Bakteriol Naturwiss; 1978; 133(5):436-43. PubMed ID: 726716 [No Abstract] [Full Text] [Related]
5. Influence of Pythium oligandrum biocontrol on fungal and oomycete population dynamics in the rhizosphere. Vallance J; Le Floch G; Déniel F; Barbier G; Lévesque CA; Rey P Appl Environ Microbiol; 2009 Jul; 75(14):4790-800. PubMed ID: 19447961 [TBL] [Abstract][Full Text] [Related]
6. Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. Thrane C; Harder Nielsen T ; Neiendam Nielsen M ; Sørensen J; Olsson S FEMS Microbiol Ecol; 2000 Aug; 33(2):139-146. PubMed ID: 10967213 [TBL] [Abstract][Full Text] [Related]
7. Long-Read Genome Sequence of the Sugar Beet Rhizosphere Mycoparasite Faure C; Veyssière M; Boëlle B; San Clemente H; Bouchez O; Lopez-Roques C; Chaubet A; Martinez Y; Bezouška K; Suchánek M; Gaulin E; Rey T; Dumas B G3 (Bethesda); 2020 Feb; 10(2):431-436. PubMed ID: 31792008 [No Abstract] [Full Text] [Related]
8. Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Zachow C; Tilcher R; Berg G Microb Ecol; 2008 Jan; 55(1):119-29. PubMed ID: 18060449 [TBL] [Abstract][Full Text] [Related]
9. Pythium oligandrum in the control of Fusarium rot on some bulbous plants. Skrzypczak C Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):179-82. PubMed ID: 12425035 [TBL] [Abstract][Full Text] [Related]
10. Biological control of Dunne C; Crowley JJ; Moënne-Loccoz Y; Dowling DN; Bruijn S; O'Gara F Microbiology (Reading); 1997 Dec; 143(12):3921-3931. PubMed ID: 33657716 [No Abstract] [Full Text] [Related]
11. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Andersen JB; Koch B; Nielsen TH; Sørensen D; Hansen M; Nybroe O; Christophersen C; Sørensen J; Molin S; Givskov M Microbiology (Reading); 2003 Jan; 149(Pt 1):37-46. PubMed ID: 12576578 [TBL] [Abstract][Full Text] [Related]
12. Isolation of Pythium oligandrum from Egyptian soil and its mycoparasitic effect on Pythium ultimum var. ultimum the damping-off organism of wheat. Abdelzaher HM; Elnaghy MA; Fadl-Allah EM Mycopathologia; 1997; 139(2):97-106. PubMed ID: 16284719 [TBL] [Abstract][Full Text] [Related]
13. Rhizosphere persistence of three Pythium oligandrum strains in tomato soilless culture assessed by DNA macroarray and real-time PCR. Le Floch G; Tambong J; Vallance J; Tirilly Y; Lévesque A; Rey P FEMS Microbiol Ecol; 2007 Aug; 61(2):317-26. PubMed ID: 17627780 [TBL] [Abstract][Full Text] [Related]
14. Antagonistic activity of bacteria isolated from crops cultivated in a rotation system and a monoculture against Pythium debaryanum and Fusarium oxysporum. Gorlach-Lira K; Stefaniak O Folia Microbiol (Praha); 2009 Sep; 54(5):447-50. PubMed ID: 19937218 [TBL] [Abstract][Full Text] [Related]
15. Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. Georgakopoulos DG; Fiddaman P; Leifert C; Malathrakis NE J Appl Microbiol; 2002; 92(6):1078-86. PubMed ID: 12010548 [TBL] [Abstract][Full Text] [Related]
16. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum polulations, soil microbial communities and soil enzyme activities. Naseby DC; Pascual JA; Lynch JM J Appl Microbiol; 2000 Jan; 88(1):161-9. PubMed ID: 10735255 [TBL] [Abstract][Full Text] [Related]
17. Antagonistic effects of Trichoderma harzianum on Pythium aphanidermatum causing the damping-off disease of tobacco in Nigeria. Fajola AO; Alasoadura SO Mycopathologia; 1975 Dec; 57(1):47-52. PubMed ID: 1239662 [TBL] [Abstract][Full Text] [Related]
18. Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Takenaka S; Sekiguchi H; Nakaho K; Tojo M; Masunaka A; Takahashi H Phytopathology; 2008 Feb; 98(2):187-95. PubMed ID: 18943195 [TBL] [Abstract][Full Text] [Related]
19. Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Benhamou N; Garand C; Goulet A Appl Environ Microbiol; 2002 Aug; 68(8):4044-60. PubMed ID: 12147506 [TBL] [Abstract][Full Text] [Related]
20. Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Dunne C; Moënne-Loccoz Y; de Bruijn FJ; O'Gara F Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2069-2078. PubMed ID: 10931911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]