These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 5765)
41. The effect of iso-carbic metabolic acidosis in blood on [H+] and [HCO3-] in CSF with deductions about the regulation of an active transport of H plus-HCO3-between blood and CSF. Mines AH; Morril CG; Sorensen SC Acta Physiol Scand; 1971 Feb; 81(2):234-45. PubMed ID: 5552796 [No Abstract] [Full Text] [Related]
42. Sodium, chloride, and bicarbonate movement from plasma to cerebrospinal fluid in cats. Vogh BP; Maren TH Am J Physiol; 1975 Mar; 228(3):673-83. PubMed ID: 803792 [TBL] [Abstract][Full Text] [Related]
43. Influence of acute and chronic respiratory alkalosis on preexisting chronic metabolic alkalosis. Madias NE; Cohen JJ; Adrogué HJ Am J Physiol; 1990 Mar; 258(3 Pt 2):F479-85. PubMed ID: 2107757 [TBL] [Abstract][Full Text] [Related]
44. [Acid-base equilibrium and the brain]. Rabary O; Boussofara M; Grimaud D Ann Fr Anesth Reanim; 1994; 13(1):111-22. PubMed ID: 8092567 [TBL] [Abstract][Full Text] [Related]
45. Effect of furosemide on cerebrospinal fluid composition. Johnson DC; Frankel HM; Kazemi H Respir Physiol; 1984 Jun; 56(3):301-8. PubMed ID: 6433418 [TBL] [Abstract][Full Text] [Related]
46. A redefinition of normal acid-base equilibrium in man: carbon dioxide tension as a key determinant of normal plasma bicarbonate concentration. Madias NE; Adrogué HJ; Horowitz GL; Cohen JJ; Schwartz WB Kidney Int; 1979 Nov; 16(5):612-8. PubMed ID: 44886 [TBL] [Abstract][Full Text] [Related]
47. Hypocapnic-hypoglycemic interactions on cerebral high-energy phosphates and pH in dogs. Sieber FE; Derrer SA; Eleff SM; Koehler RC; Traystman RJ Am J Physiol; 1992 Dec; 263(6 Pt 2):H1864-71. PubMed ID: 1481910 [TBL] [Abstract][Full Text] [Related]
48. Metabolic response of horses to a high soluble carbohydrate diet: effects of low-intensity submaximal exercise and sodium bicarbonate supplementation. Ferrante PL; Menninger JH; Spencer PA; Kronfeld DS Am J Vet Res; 1992 Mar; 53(3):321-5. PubMed ID: 1317688 [TBL] [Abstract][Full Text] [Related]
49. Renal contribution to acid-base regulation during the menstrual cycle. Takano N; Kaneda T Am J Physiol; 1983 Mar; 244(3):F320-4. PubMed ID: 6402938 [TBL] [Abstract][Full Text] [Related]
50. The effect of arterial hypoxemia upon acid-base parameters in arterial blood and cisternal cerebrospinal fluid of the rat. MacMillan V; Siesjö BK Acta Physiol Scand; 1971 Dec; 83(4):454-62. PubMed ID: 5160128 [No Abstract] [Full Text] [Related]
51. The CSF HCO3 increase in hypercapnia relationshp to HCO3, glutamate, glutamine and NH3 in brain. Kazemi H; Wyen J; van Leuven F; Leusen I Respir Physiol; 1976 Dec; 28(3):387-401. PubMed ID: 14366 [TBL] [Abstract][Full Text] [Related]
52. Correction of CSF HCO(-3) after its experimental increase in normocapnia. Role of plasma HCO(-3). Weyne J; Nshimyumuremyi JB; Demeester G; Leusen I Pflugers Arch; 1982 Apr; 393(2):157-63. PubMed ID: 6808459 [TBL] [Abstract][Full Text] [Related]
53. Acid-base regulation of ion transport in rabbit ileum in vitro. DeSoignie R; Sellin JH Gastroenterology; 1990 Jul; 99(1):132-41. PubMed ID: 2111782 [TBL] [Abstract][Full Text] [Related]
54. Effects of SITS, an anion transport blocker, on CSF ionic composition in metabolic alkalosis. Javaheri S; Weyne J; Demeester G; Leusen I J Appl Physiol Respir Environ Exerc Physiol; 1984 Jul; 57(1):92-7. PubMed ID: 6469796 [TBL] [Abstract][Full Text] [Related]
55. The effects of chronic hypoxemia on electrolyte and acid-base equilibrium: an examination of normocapneic hypoxemia and of the influence of hypoxemia on the adaptation to chronic hypercapnia. Sapir DG; Levine DZ; Schwartz WB J Clin Invest; 1967 Mar; 46(3):369-77. PubMed ID: 6023772 [TBL] [Abstract][Full Text] [Related]
56. Regulation of pH and HCO3 in brain and CSF of the developing mammalian central nervous system. Johanson CE; Allen J; Withrow CD Brain Res; 1988 Feb; 466(2):255-64. PubMed ID: 3129145 [TBL] [Abstract][Full Text] [Related]
57. Role of PCO2 as determinant of CSF [HCO-3] in metabolic acidosis. Javaheri S; Nardell EA; Kazemi H Respir Physiol; 1979 Feb; 36(2):155-66. PubMed ID: 441571 [TBL] [Abstract][Full Text] [Related]
58. Effect of cerebral extracellular fluid acidity on total and regional cerebral blood flow. Britton SL; Lutherer LO; Davies DG J Appl Physiol Respir Environ Exerc Physiol; 1979 Oct; 47(4):818-26. PubMed ID: 41828 [TBL] [Abstract][Full Text] [Related]
59. Pial arteriolar vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit. Muizelaar JP; van der Poel HG; Li ZC; Kontos HA; Levasseur JE J Neurosurg; 1988 Dec; 69(6):923-7. PubMed ID: 3142972 [TBL] [Abstract][Full Text] [Related]
60. H+ transport from CNS in hypercapnia and regulation of CSF [HCO3-]. Kazemi H; Choma L J Appl Physiol Respir Environ Exerc Physiol; 1977 May; 42(5):667-72. PubMed ID: 16862 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]