These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 5765168)

  • 1. Behavior of Fusarium roseum 'Sambucinum' under carbon starvation conditions in relation to survival in soil.
    Griffin GJ; Pass T
    Can J Microbiol; 1969 Jan; 15(1):117-26. PubMed ID: 5765168
    [No Abstract]   [Full Text] [Related]  

  • 2. Carbon and nitrogen requirements for macroconidial germination of Fusarium solani: dependence on conidial density.
    Griffin GJ
    Can J Microbiol; 1970 Aug; 16(8):733-40. PubMed ID: 5484061
    [No Abstract]   [Full Text] [Related]  

  • 3. Modification of the exogenous carbon and nitrogen requirements for chlamydospore germination of Fusarium solani by contact with soil.
    Griffin GJ
    Can J Microbiol; 1973 Aug; 19(8):999-1005. PubMed ID: 4752344
    [No Abstract]   [Full Text] [Related]  

  • 4. [Effect of antagonistic bacteria and soil disinfectant on soil bacterium community in banana Fusarium wilt disease area].
    Zhou D; Jing T; Tan X; Chen B; Zhang X; Gao Z
    Wei Sheng Wu Xue Bao; 2013 Aug; 53(8):842-51. PubMed ID: 24341276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Major Fusarium diseases on crops and their control management with soil solarisation in northwest Iran.
    Saremi H; Saremi H; Okhovvat SM
    Commun Agric Appl Biol Sci; 2008; 73(2):189-99. PubMed ID: 19226756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Utilization of carbon sources by Fusarium poae (Peck) Wollenw. Strains from different trophic groups].
    Kurchenko IN; Vasilevskaia AI; Artyshkova LV; Nakonechnaia LT; Iur'eva EM
    Mikrobiol Z; 2013; 75(1):54-68. PubMed ID: 23516841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and metabolic pathway of acetamiprid biodegradation by Fusarium sp. strain CS-3 isolated from soil.
    Shi Z; Dong W; Xin F; Liu J; Zhou X; Xu F; Lv Z; Ma J; Zhang W; Fang Y; Jiang M
    Biodegradation; 2018 Dec; 29(6):593-603. PubMed ID: 30259232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of low pH, carbon and inorganic nitrogen source use in chlamydospore formation by Fusarium solani.
    Griffin GJ
    Can J Microbiol; 1976 Sep; 22(9):1381-9. PubMed ID: 10071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Damping-off in conifer seedling nurseries in Noshahr and Kelardasht.
    Zad SJ; Koshnevice M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2a):91-3. PubMed ID: 12425024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of chlamydospore formation in Fusarium solani by soil bacteria.
    Ford EJ; Gold AH; Snyder WC
    Phytopathology; 1970 Mar; 60(3):479-84. PubMed ID: 5436564
    [No Abstract]   [Full Text] [Related]  

  • 11. Colonization dynamic of various crop residues by Fusarium graminearum monitored through real-time PCR measurements.
    Leplat J; Heraud C; Gautheron E; Mangin P; Falchetto L; Steinberg C
    J Appl Microbiol; 2016 Nov; 121(5):1394-1405. PubMed ID: 27541831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of plants on phytopathogenic soil fungi. V. Fusarium oxysporum f. pisi Snyd. et Hans].
    Seidel D
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(6):541-5. PubMed ID: 5536790
    [No Abstract]   [Full Text] [Related]  

  • 13. [Lipid composition of Fusarium sambucinum grown in a fermenter on media with different carbon sources].
    Ievleva NR; Bragintseva LM
    Mikrobiologiia; 1984; 53(4):628-32. PubMed ID: 6482751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enniatin production by Fusarium sambucinum: primary, secondary, and unitary metabolism.
    Audhya TK; Russell DW
    J Gen Microbiol; 1975 Feb; 86(2):327-32. PubMed ID: 234512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Populations of the spinach wilt pathogen, Fusarium oxysporum f. sp. spinaciae, in the root tissues, rhizosphere, and soil in the field.
    Reyes AA
    Can J Microbiol; 1979 Feb; 25(2):227-9. PubMed ID: 436018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biodegradation of agricultural plant residues by Fusarium oxysporum strains].
    Chepchak TP; Kurchenko IN; Iur'eva EM
    Mikrobiol Z; 2014; 76(4):41-6. PubMed ID: 25199344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development and relations of Fusarium culmorum and Pseudomonas fluorescens in soil].
    Strunnikova OK; Shakhnazarova VIu; Vishnevskaia NA; Chebotar' VK; Tikhonovich IA
    Mikrobiologiia; 2007; 76(5):675-81. PubMed ID: 18069329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid metabolism and benzo[a]pyrene degradation by Fusarium solani: an unexplored potential.
    Delsarte I; Rafin C; Mrad F; Veignie E
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):12177-12182. PubMed ID: 29392603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid body content and persistence of chlamydospores of Fusarium solani in soil.
    van Eck WH
    Can J Microbiol; 1978 Jan; 24(1):65-9. PubMed ID: 754878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of pyrene and phenanthrene in soil using immobilized fungi Fusarium sp.
    Li P; Li H; Stagnitti F; Wang X; Zhang H; Gong Z; Liu W; Xiong X; Li L; Austin C; Barry DA
    Bull Environ Contam Toxicol; 2005 Sep; 75(3):443-50. PubMed ID: 16385948
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.