These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 5765175)

  • 1. A comparative study in vivo of enzyme activities in batch, continuous, and phased cultures of a pseudomonad grown on phenylacetic acid.
    Kurz WG; Dawsan PS; Blakley ER
    Can J Microbiol; 1969 Jan; 15(1):27-33. PubMed ID: 5765175
    [No Abstract]   [Full Text] [Related]  

  • 2. Growth of pseudomonas species on phenylacetamide.
    Betz JL; Clarke PH
    J Gen Microbiol; 1973 Mar; 75(1):167-77. PubMed ID: 4198640
    [No Abstract]   [Full Text] [Related]  

  • 3. The breakdown of tropic acid in Pseudomonas putida strain L. I. Utilization of various substrates; the conversion of tropic acid into phenylacetic acid.
    Stevens WF; Rörsch A
    Biochim Biophys Acta; 1971 Feb; 230(2):204-11. PubMed ID: 5573355
    [No Abstract]   [Full Text] [Related]  

  • 4. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3.
    Ward PG; de Roo G; O'Connor KE
    Appl Environ Microbiol; 2005 Apr; 71(4):2046-52. PubMed ID: 15812037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolism of p-fluorophenylacetic acid by a Pseudomonas sp. II. The degradative pathway.
    Harper DB; Blakley ER
    Can J Microbiol; 1971 May; 17(5):645-50. PubMed ID: 5087890
    [No Abstract]   [Full Text] [Related]  

  • 6. Phenylacetate-coenzyme A ligase is induced during growth on phenylacetic acid in different bacteria of several genera.
    Vitovski S
    FEMS Microbiol Lett; 1993 Mar; 108(1):1-5. PubMed ID: 8472917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of 4-chlorophenylacetic acid by a Pseudomonas species.
    Klages U; Markus A; Lingens F
    J Bacteriol; 1981 Apr; 146(1):64-8. PubMed ID: 7217006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The metabolism of phenylacetic acid by a Pseudomonas.
    Blakley ER; Kurz W; Halvorson H; Simpson FJ
    Can J Microbiol; 1967 Feb; 13(2):147-57. PubMed ID: 4382429
    [No Abstract]   [Full Text] [Related]  

  • 9. The metabolism of p-fluorophenylacetic acid by a Pseudomonas sp. I. Isolation and identification of intermediates in degradation.
    Harper DB; Blakley ER
    Can J Microbiol; 1971 May; 17(5):635-44. PubMed ID: 4325920
    [No Abstract]   [Full Text] [Related]  

  • 10. Production of glutaric acid: a useful criterion for differentiating Pseudomonas diminuta from Pseudomonas vesiculare.
    Moss CW; Kaltenbach CM
    Appl Microbiol; 1974 Feb; 27(2):437-9. PubMed ID: 4823425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of heterologous expression of phaG [(R)-3-hydroxyacyl-ACP-CoA transferase] on polyhydroxyalkanoate accumulation from the aromatic hydrocarbon phenylacetic acid in Pseudomonas species.
    Tobin KM; O'Leary ND; Dobson AD; O'Connor KE
    FEMS Microbiol Lett; 2007 Mar; 268(1):9-15. PubMed ID: 17241246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon catabolite regulation of phenylacetyl-CoA ligase from Pseudomonas putida.
    Martinez-Blanco H; Reglero A; Luengo JM
    Biochem Biophys Res Commun; 1990 Mar; 167(3):891-7. PubMed ID: 2322284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of imidazole by a pseudomonad.
    Oien HG; Wright LD
    J Bacteriol; 1971 Mar; 105(3):1229-31. PubMed ID: 5547986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilising aromatic hydrocarbons.
    Tobin KM; O'Connor KE
    FEMS Microbiol Lett; 2005 Dec; 253(1):111-8. PubMed ID: 16260095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction and repression of the sty operon in Pseudomonas putida CA-3 during growth on phenylacetic acid under organic and inorganic nutrient-limiting continuous culture conditions.
    O'Leary ND; Duetz WA; Dobson AD; O'Connor KE
    FEMS Microbiol Lett; 2002 Mar; 208(2):263-8. PubMed ID: 11959447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of Candida sp. 115 during hydrolysis of penicillin G and metabolism of phenylacetic acid.
    Deshpande BS; Ambedkar SS; Sudhakaran VK; Narayanan RA; Shewale JG
    Hindustan Antibiot Bull; 1989; 31(3-4):71-5. PubMed ID: 2486269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymology of oxidation of tropic acid to phenylacetic acid in metabolism of atropine by Pseudomonas sp. strain AT3.
    Long MT; Bartholomew BA; Smith MJ; Trudgill PW; Hopper DJ
    J Bacteriol; 1997 Feb; 179(4):1044-50. PubMed ID: 9023182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the utilization of 4-hydroxybenzoate and vanillate in batch and continuous cultures of Pseudomonas acidovorans.
    Reber HH
    Arch Microbiol; 1980 May; 126(1):65-70. PubMed ID: 7396639
    [No Abstract]   [Full Text] [Related]  

  • 19. Growth characteristics of a pseudomonad which utilizes pyridoxine or pyridoxamine as a carbon source.
    Guirard BM; Snell EE
    J Bacteriol; 1971 Dec; 108(3):1318-21. PubMed ID: 4945196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The coexistence of two pathways for the metabolism of 2-hydroxymuconic semialdehyde in a naphthalene-grown pseudomonad.
    Catterall FA; Sala-Trepat JM; Williams PA
    Biochem Biophys Res Commun; 1971 May; 43(3):463-9. PubMed ID: 4327441
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.