BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 5765775)

  • 1. Energy-limitation of a sodium-independent amino acid transport in ovarian oocytes of the frog.
    Merriam RW; Pollack G
    J Cell Physiol; 1969 Feb; 73(1):1-7. PubMed ID: 5765775
    [No Abstract]   [Full Text] [Related]  

  • 2. The intracellular distribution of the free amino acid pool in frog oocytes.
    Merriam RW
    Exp Cell Res; 1969 Aug; 56(2):259-64. PubMed ID: 5824446
    [No Abstract]   [Full Text] [Related]  

  • 3. Some characteristics of amino acid transport in frog ovarian oocytes.
    Merriam RW
    Exp Cell Res; 1966 May; 42(2):340-7. PubMed ID: 5949562
    [No Abstract]   [Full Text] [Related]  

  • 4. [Influence of glucose on intestinal transport of phenylalanine in the presence and absence of dinitrophenol].
    Luisier AL; Robinson JW
    Experientia; 1972 Nov; 28(11):1313-5. PubMed ID: 4638901
    [No Abstract]   [Full Text] [Related]  

  • 5. Myo-inositol transport in slices of rat kidney cortex. 3. Hormonal, metabolic, and efflux studies.
    Hauser G
    Ann N Y Acad Sci; 1969 Oct; 165(2):630-45. PubMed ID: 5259619
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of dinitrophenol and other phosphorylation uncouplers on the birefringence of the mitotic apparatus of marine eggs.
    Sawada N; Rebhun LI
    Exp Cell Res; 1969 Apr; 55(1):33-8. PubMed ID: 4976382
    [No Abstract]   [Full Text] [Related]  

  • 7. [Effect of inhibitors of energy metabolism on the synthesis and decay of RNA in animal cells].
    Volkova LM; Shuppe NG
    Dokl Akad Nauk SSSR; 1969; 186(1):225-7. PubMed ID: 5397546
    [No Abstract]   [Full Text] [Related]  

  • 8. Nutrition and metabolism of marine bacteria. XVII. Ion-dependent retention of alpha-aminoisobutyric acid and its relation to Na+ dependent transport in a marine pseudomonad.
    Wong PT; Thompson J; MacLeod RA
    J Biol Chem; 1969 Feb; 244(3):1016-25. PubMed ID: 5769176
    [No Abstract]   [Full Text] [Related]  

  • 9. Differences in coupling of energy to glycine and phenylalanine transport in aerobically grown Escherichia coli.
    Sprott GD; Dimock K; Martin WG; Schneider H
    J Bacteriol; 1975 Sep; 123(3):828-36. PubMed ID: 1099078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Energy provision for the effect of spasmolytics].
    Tikhonov VN
    Farmakol Toksikol; 1973; 36(5):557-9. PubMed ID: 4788063
    [No Abstract]   [Full Text] [Related]  

  • 11. [The depression of active sodium transport through the wall of the urinary bladder of the frog by inhibitors of succinate oxidation and oxidative phosphorylation enzymes].
    Leont'ev VG; Natochin IuV
    Dokl Akad Nauk SSSR; 1965 Dec; 165(4):962-5. PubMed ID: 5876155
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of oxidative and glycolytic metabolism in cation transport of the isolated rat liver perfused with an erythrocyte-free medium.
    Frimmer M; Kreh W
    Naunyn Schmiedebergs Arch Pharmakol; 1971; 268(1):119-21. PubMed ID: 4250098
    [No Abstract]   [Full Text] [Related]  

  • 13. Amino acid transport in mammalian oocytes.
    Moor RM; Smith MW
    Exp Cell Res; 1979 Mar; 119(2):333-41. PubMed ID: 428464
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy-coupled influx of thiomethylgalactoside into Escherichia coli.
    Manno JA; Schachter D
    J Biol Chem; 1970 Mar; 245(5):1217-23. PubMed ID: 4906847
    [No Abstract]   [Full Text] [Related]  

  • 15. [Ion transport in myelinated nerve fibers].
    Bradl M
    Acta Biol Med Ger; 1966; 17(1):61-86. PubMed ID: 5982733
    [No Abstract]   [Full Text] [Related]  

  • 16. Transport of vitamin B 12 in Ochromonas malhamensis.
    Bradbeer C
    Arch Biochem Biophys; 1971 May; 144(1):184-92. PubMed ID: 5117526
    [No Abstract]   [Full Text] [Related]  

  • 17. [On the autoradiographic localization of active concentration of radioiodine in the guinea pig trachea with remarks on 35SCN, 36 Cl and 58Co].
    Kleine TO
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 257(2):172-92. PubMed ID: 4232724
    [No Abstract]   [Full Text] [Related]  

  • 18. Energetic leukocyte metabolism. II. Incorporation of phosphate-P32 into leukocytes and identification of P-32 labelled compounds by high voltage electrophoresis.
    Aleyassine H; Frei J
    Enzymol Biol Clin (Basel); 1966; 7(1):89-97. PubMed ID: 5296866
    [No Abstract]   [Full Text] [Related]  

  • 19. Confirmation of "universality rule" in solute distributions: studies of simultaneous efflux of Na+ and D-arabinose from single frog eggs living, dying, and dead.
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys; 1977; 9(4-5):405-26. PubMed ID: 306630
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanism and kinetics of chromate transport in human platelets.
    Tsukada T; Steiner M; Baldini M
    Am J Physiol; 1971 Dec; 221(6):1697-705. PubMed ID: 5124313
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.