These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 5766054)
1. Calculation of radiation dose due to protons and neutrons with energies from 0.4 to 2.4 GeV. Wright HA; Anderson VE; Turner JE; Neufeld J; Snyder WS Health Phys; 1969 Jan; 16(1):13-31. PubMed ID: 5766054 [No Abstract] [Full Text] [Related]
2. Radiation dose from neutrons and protons in the energy range from 400 MeV to 2 GeV. Neufeld J; Snyder WS; Turner JE; Wright H; Wheatley BM; Wyckoff HO Health Phys; 1969 Sep; 17(3):449-57. PubMed ID: 5798926 [No Abstract] [Full Text] [Related]
3. Free-nucleon target model applied to penetration and dose calculations for 200 and 400 McV protons and neutrons. Wright HA; Turner JE Health Phys; 1970 Jun; 18(6):711-20. PubMed ID: 5513264 [No Abstract] [Full Text] [Related]
4. Calculation of radiation dose from protons and neutrons to 400 MeV. Neufeld J; Snyder WS; Turner JE; Wright H Health Phys; 1966 Feb; 12(2):227-37. PubMed ID: 5916788 [No Abstract] [Full Text] [Related]
5. Calculation of the absorbed dose and dose equivalent from neutrons and protons in the energy range from 3.5 GeV to 1.0 TeV. Armstrong TW; Chandler KC Health Phys; 1973 Mar; 24(3):227-86. PubMed ID: 4691635 [No Abstract] [Full Text] [Related]
6. The LET distribution of the recoil proton dose from DD and DT neutrons. Lawson RC; Watt DE Phys Med Biol; 1967 Apr; 12(2):217-28. PubMed ID: 6033359 [No Abstract] [Full Text] [Related]
7. (D, D) and (D, T) neutron depth dose measurements in a tissue-equivalent phantom. Lawson RC; Clare DM; Watt DE Phys Med Biol; 1967 Apr; 12(2):201-15. PubMed ID: 6033358 [No Abstract] [Full Text] [Related]
8. Influence of energy straggling on the shape of neutron-produced single event spectra. Coppola M; Booz J Biophysik; 1973 May; 9(3):225-36. PubMed ID: 4790862 [No Abstract] [Full Text] [Related]
9. Calculation of spectra of energy deposited by recoil heavy particles. Saigusa T Health Phys; 1970 May; 18(5):547-60. PubMed ID: 5513082 [No Abstract] [Full Text] [Related]
10. THE ENERGY DEPOSITION IN A WATER-FILLED SPHERICAL PHANTOM BY SECONDARIES FROM HIGH-ENERGY PROTONS AND BY NEUTRONS. BLOSSER TV; MAIENSCHEIN FC; FREESTONE RM Health Phys; 1964 Oct; 10():743-50. PubMed ID: 14226266 [No Abstract] [Full Text] [Related]
11. Distribution of the dose from neutrons in a thin sample of wet tissue as a function of linear energy transfer (LET). Dousset MH; Hamard J; Ricourt A Phys Med Biol; 1971 Jul; 16(3):467-78. PubMed ID: 5559697 [No Abstract] [Full Text] [Related]
12. The LET distribution of the recoil proton dose from poly-energetic neutron sources. Lawson RC; Watt DE Phys Med Biol; 1968 Oct; 13(4):619-26. PubMed ID: 5683330 [No Abstract] [Full Text] [Related]
13. [Radiation injuries to a tissue-equivalent medium caused by elastic collisions during irradiation with protons with initial energies of 0.2-100 keV and 1-1000 keV neutrons]. Naumov VA; Rozin SG; Troitskiĭ NA; Iaroshevich AA Radiobiologiia; 1975 MAR-APR; 15(2):233-7. PubMed ID: 1153706 [No Abstract] [Full Text] [Related]
14. Reaction mechanism interplay in determining the biological effectiveness of neutrons as a function of energy. Baiocco G; Alloni D; Babini G; Mariotti L; Ottolenghi A Radiat Prot Dosimetry; 2015 Sep; 166(1-4):316-9. PubMed ID: 25848097 [TBL] [Abstract][Full Text] [Related]
15. Calculation of energy distributions of charged particles produced by neutrons from 0.14 to 65 MeV in tissue substitutes. Tsuda S; Nakane Y; Yamaguchi Y Radiat Prot Dosimetry; 2007; 126(1-4):174-7. PubMed ID: 17569688 [TBL] [Abstract][Full Text] [Related]
16. Differential dosimetry in a neutron-proton mixed field with low-pressure proportional counters. Takada M; Yamaguchi H; Uchihori Y; Kitamura H; Fujitaka K Radiat Prot Dosimetry; 2001; 97(3):213-22. PubMed ID: 11843336 [TBL] [Abstract][Full Text] [Related]
17. On neutron dosimetry by semiconductor detectors and hydrogenous radiator assembly. Deme S Health Phys; 1970 Jun; 18(6):705-10. PubMed ID: 5513263 [No Abstract] [Full Text] [Related]
18. Calculation of dE-dx and energy loss distributions in spherical cavities for monoenergetic neutron fields. Dvorak RF Health Phys; 1969 Aug; 17(2):279-93. PubMed ID: 5802576 [No Abstract] [Full Text] [Related]
19. TPD-based evaluation of near threshold mono-energetic proton energies for the (7)Li(p,n)(7)Be production of neutrons for BNCT. Bengua G; Kobayashi T; Tanaka K; Nakagawa Y; Unesaki H Phys Med Biol; 2006 Aug; 51(16):4095-109. PubMed ID: 16885627 [TBL] [Abstract][Full Text] [Related]
20. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms. Sato T; Endo A; Zankl M; Petoussi-Henss N; Niita K Phys Med Biol; 2009 Apr; 54(7):1997-2014. PubMed ID: 19265210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]